Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years

Abstract

Previous drilling through submerged fossil coral reefs has greatly improved our understanding of the general pattern of sea-level change since the Last Glacial Maximum, however, how reefs responded to these changes remains uncertain. Here we document the evolution of the Great Barrier Reef (GBR), the world’s largest reef system, to major, abrupt environmental changes over the past 30 thousand years based on comprehensive sedimentological, biological and geochronological records from fossil reef cores. We show that reefs migrated seaward as sea level fell to its lowest level during the most recent glaciation (~20.5–20.7 thousand years ago (ka)), then landward as the shelf flooded and ocean temperatures increased during the subsequent deglacial period (~20–10 ka). Growth was interrupted by five reef-death events caused by subaerial exposure or sea-level rise outpacing reef growth. Around 10 ka, the reef drowned as the sea level continued to rise, flooding more of the shelf and causing a higher sediment flux. The GBR’s capacity for rapid lateral migration at rates of 0.2–1.5 m yr−1 (and the ability to recruit locally) suggest that, as an ecosystem, the GBR has been more resilient to past sea-level and temperature fluctuations than previously thought, but it has been highly sensitive to increased sediment input over centennial–millennial timescales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geomorphic, chronostratigraphic and biological development of the Hydrographer’s Passage drill transect (HYD-01C) off Mackay.
Fig. 2: Geomorphic, chronostratigraphic and biological development of the Noggin Pass drill transect (NOG-01B) off Cairns.
Fig. 3: Evolution of the GBR over the past 30 kyr in relation to major sea-level and environmental changes.
Fig. 4: Simplified model that shows the evolution of the GBR over the past 30 kyr.

Similar content being viewed by others

References

  1. Fairbanks, R. G. A 17,000 year glacio-eustatic sea-level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  2. Deschamps, P. et al. Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature 483, 559–564 (2012).

    Article  Google Scholar 

  3. Bard, E., Hamelin, B. & Fairbanks, R. G. U–Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346, 456–458 (1990).

    Article  Google Scholar 

  4. Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    Article  Google Scholar 

  5. Weaver, A. J., Saenko, O. A., Clark, P. U. & Mitrovica, J. X. Meltwater pulse 1A from Antarctica as a trigger of the Bolling–Allerod warm interval. Science 299, 1709–1713 (2003).

    Article  Google Scholar 

  6. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    Article  Google Scholar 

  7. Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl Acad. Sci. USA 109, 21378–21383 (2012).

    Article  Google Scholar 

  8. Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).

    Article  Google Scholar 

  9. Camoin, G. F. et al. Reef response to sea-level and environmental changes during the last deglaciation: integrated Ocean Drilling Program Expedition 310, Tahiti sea level. Geology 40, 643–646 (2012).

    Article  Google Scholar 

  10. Cabioch, G. et al. Continuous reef growth during the last 23 kyr BP in a tectonically active zone (Vanuatu, SouthWest Pacific). Quat. Sci. Rev. 22, 1771–1786 (2003).

    Article  Google Scholar 

  11. Edwards, R. L. et al. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260, 962–968 (1993).

    Article  Google Scholar 

  12. Blanchon, P. & Shaw, J. Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23, 4–8 (1995).

    Article  Google Scholar 

  13. Roff, G. et al. Palaeoecological evidence of a historical collapse of corals at Pelorus Island, inshore Great Barrier Reef, following European settlement. Proc. R. Soc. B 280, 20122100 (2013).

    Article  Google Scholar 

  14. Pandolfi, J. M. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22, 152–176 (1996).

    Article  Google Scholar 

  15. Humblet, M. & Webster, J. M. Coral community changes in the Great Barrier Reef in response to major environmental changes over glacial-interglacial timescales. Palaeogeogr. Palaeoclimatol. Palaecol. 472, 216–235 (2017).

    Article  Google Scholar 

  16. Webster, J. M., Yokoyama, Y., Cotterill, C. & Expedition 325 Scientists. Proc. Integrated Ocean Drilling Program Vol. 325 (Integrated Ocean Drilling Program Management International, Integrated Ocean Drilling Program, 2011).

  17. Felis, T. et al. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum. Nat. Commun. 5, 4102 (2014).

    Article  Google Scholar 

  18. Page, M. C. & Dickens, G. R. Sediment fluxes to Marion Plateau (southern Great Barrier Reef province) over the last 130 ky: new constraints on ‘transgressive-shedding’ off northeastern Australia. Mar. Geol. 219, 27–45 (2005).

    Article  Google Scholar 

  19. Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef (Cambridge Univ. Press, Cambridge, 2017).

    Google Scholar 

  20. Davies, P. J. in Proc. 6th Int. Coral Reef Symp 9–17 (Townsville, 1988).

  21. Gischler, E. et al. Microfacies and diagenesis of older Pleistocene (pre-last glacial maximum) reef deposits, Great Barrier Reef, Australia (IODP Expedition 325): a quantitative approach. Sedimentology 60, 1432–1466 (2013).

    Google Scholar 

  22. Linsley, B. K., Rosenthal, Y. & Oppo, D. W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool. Nat. Geosci. 3, 578–583 (2010).

    Article  Google Scholar 

  23. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  Google Scholar 

  24. Hinestrosa, G., Webster, J. M., Beaman, R. J. & Anderson, L. M. Seismic stratigraphy and development of the shelf-edge reefs of the Great Barrier Reef, Australia. Mar. Geol. 353, 1–20 (2014).

    Article  Google Scholar 

  25. Hinestrosa, G., Webster, J. M. & Beaman, R. J. Postglacial sediment deposition along a mixed carbonate-siliciclastic margin: new constraints from the drowned shelf-edge reefs of the Great Barrier Reef, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 446, 168–185 (2016).

    Article  Google Scholar 

  26. Perry, C. T., Smithers, S. G., Gulliver, P. & Browne, N. K. Evidence of very rapid reef accretion and reef growth under high turbidity and terrigenous sedimentation. Geology 40, 719–722 (2012).

    Article  Google Scholar 

  27. Perry, C. T. & Smithers, S. G. Cycles of coral reef ‘turn-on’, rapid growth and ‘turn-off’ over the past 8500 years: a context for understanding modern ecological states and trajectories. Glob. Change Biol. 17, 76–86 (2011).

    Article  Google Scholar 

  28. Blanchon, P. et al. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwinʼs reef types. Sci. Rep. 4, 4997 (2014).

    Article  Google Scholar 

  29. Abdul, N. A., Mortlock, R. A., Wright, J. D. & Fairbanks, R. G. Younger Dryas sea-level and meltwater pulse 1B recorded in Barbados reef-crest coral Acropora palmata. Paleoceanography 31, 330–344 (2016).

    Article  Google Scholar 

  30. Bard, E., Hamelin, B. & Delanghe-Sabatier, D. Deglacial meltwater pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327, 1235–1237 (2010).

    Article  Google Scholar 

  31. Dunbar, G. B., Dickens, G. R. & Carter, R. M. Sediment flux across the Great Barrier Reef Shelf to the Queensland Trough over the last 300 ky. Sediment. Geol. 133, 49–92 (2000).

    Article  Google Scholar 

  32. Wooldridge, S. A. Instability and breakdown of the coral–algae symbiosis upon exceedence of the interglacial PCO2 threshold (>260 ppmv): the ‘missingʼ Earth-System feedback mechanism. Coral Reefs 36, 1025–1037 (2017).

    Article  Google Scholar 

  33. Kojis, B. L. & Quinn, N. J. Seasonal and depth variation in fecundity of Acropora palifera at two reefs in Papua New Guinea. Coral Reefs 3, 165–172 (1984).

    Article  Google Scholar 

  34. Montaggioni, L. F. History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth-Sci. Rev. 71, 1–75 (2005).

    Article  Google Scholar 

  35. Thomas, C. J. Connectivity between submerged and near-sea-surface coral reefs: can submerged reef populations act as refuges? Divers. Distrib. 21, 1254–1266 (2015).

    Article  Google Scholar 

  36. De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl Acad. Sci. USA 109, 17995–17999 (2012).

    Article  Google Scholar 

  37. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  Google Scholar 

  38. Abbey, E., Webster, J. M. & Beaman, R. J. Geomorphology of submerged reefs on the shelf edge of the Great Barrier Reef: the influence of oscillating Pleistocene sea levels. Mar. Geol. 288, 61–78 (2011).

    Article  Google Scholar 

  39. Obrochta, S. P. et al. The undatables: quantifying uncertainty in a highly expanded Late Glacial–Holocene sediment sequence recovered from the deepest Baltic Sea basin—IODP Site M0063. Geochem. Geophys. Geosystems 18, 858–871 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the IODP and ECORD (European Consortium for Ocean Research Drilling) for drilling the GBR, and the Bremen Core Repository for organizing the onshore sampling party. Financial support was provided by the Australian Research Council (grant no. DP1094001 and no. FT140100286), ANZIC, Institut Polytechnique de Bordeaux and KAKENHI (no. 25247083).

Author information

Authors and Affiliations

Authors

Contributions

J.M.W. and Y.Y. were co-chief scientists of Expedition 325. J.M.W. wrote the manuscript in collaboration with J.C.B., M.H., D.C.P., Y.I., R.B., T.E., Y.Y. and H.M., and the paper was refined by contributions from the rest of the co-authors.

Corresponding author

Correspondence to Jody M. Webster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherʼs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Tables and Figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, J.M., Braga, J.C., Humblet, M. et al. Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years. Nature Geosci 11, 426–432 (2018). https://doi.org/10.1038/s41561-018-0127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0127-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing