Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Puzzling features of western Mediterranean tectonics explained by slab dragging

A Publisher Correction to this article was published on 26 March 2018

Abstract

The recent tectonic evolution of the western Mediterranean region is enigmatic. The causes for the closure of the Moroccan marine gateway prior to the Messinian salinity crisis, for the ongoing shortening of the Moroccan Rif and for the origin of the seismogenic Trans-Alboran shear zone and eastern Betics extension are unclear. These puzzling tectonic features cannot be fully explained by subduction of the east-dipping Gibraltar slab in the context of the regional relative plate motion frame. Here we use a combination of geological and geodetic data, as well as three-dimensional numerical modelling of subduction, to show that these unusual tectonic features could be the consequence of slab dragging—the north to north-eastward dragging of the Gibraltar slab by the absolute motion of the African Plate. Comparison of our model results to patterns of deformation in the western Mediterranean constrained by geological and geodetic data confirm that slab dragging provides a plausible mechanism for the observed deformation. Our results imply that the impact of absolute plate motion on subduction is identifiable from crustal observations. Identifying such signatures elsewhere may improve the mantle reference frame and provide insights on subduction evolution and associated crustal deformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RGB slab and its connectivity to the African and Iberian lithosphere.
Fig. 2: Western Mediterranean plate boundary region.
Fig. 3: African APM estimates from modern APM models.
Fig. 4: G model: slab motion with a focus on the past 8 Myr.
Fig. 5: GPS-derived strain and rotation rates and crustal motion in the mantle frame.

Similar content being viewed by others

References

  1. Heuret, A. & Lallemand, S. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter.149, 31–51 (2005).

    Google Scholar 

  2. Schellart, W. P., Stegman, D. R. & Freeman, J. Global trench migration velocities and slab migration induced upper mantle volume fluxes: constraints to find an Earth reference frame based on minimizing viscous dissipation. Earth Sci. Rev.88, 118–144 (2008).

    Google Scholar 

  3. Haq, S .S. B. & Davis, D. M. Mechanics of fore-arc slivers: insights from simple analog models. Tectonics29, 5015 (2010).

  4. Chertova, M. V., Spakman, W., van den Berg, A. P. & van Hinsbergen, D. J. J. Absolute plate motions and regional subduction evolution.Geochem. Geophys. Geosyst. 15, 3780–3792 (2014)..

  5. Giardini, D. & Woodhouse, J. H. Horizontal shear flow in the mantle beneath the Tonga arc. Nature319, 551–555 (1986).

    Google Scholar 

  6. Spakman, W. & Hall, R. Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nat. Geosci.3, 562–566 (2010).

    Google Scholar 

  7. Pikser, J. E., Forsyth, D. W. & Hirth, G. Along-strike translation of a fossil slab. Earth Planet. Sci. Lett.331–332, 315–321 (2012).

    Google Scholar 

  8. Le Dain, A. Y., Tapponnier, P. & Molnar, P. Active faulting and tectonics of Burma and surrounding regions. J. Geophys. Res.89, 453–472 (1984).

    Google Scholar 

  9. Platt, J. P. et al. The ultimate arc: differential displacement, oroclinal bending, and vertical axis rotation in the external Betic–Rif arc.Tectonics22, 1017 (2003).

    Google Scholar 

  10. Gutscher, M. A. et al. Evidence for active subduction beneath Gibraltar. Geology30, 1071–1074 (2002).

    Google Scholar 

  11. Spakman, W. & Wortel, M. J. R. in The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle (eds Cavazza, W. et al.) 31–52 (Springer, Berlin, 2004).

  12. Bezada, M. J. et al. Evidence for slab rollback in western-most Mediterranean from improved upper mantle imaging. Earth Planet. Sci. Lett.368, 51–60 (2013).

    Google Scholar 

  13. Villaseñor, A. et al. Subduction and volcanism in the Iberia–North Africa collision zone from tomographic images of the upper mantle. Tectonophysics663, 238–249 (2015).

    Google Scholar 

  14. Chertova, M. V., Spakman, W., van den Berg, A. P., Geenen, T. & van Hinsbergen, D. J. J. Underpinning tectonic reconstructions of the western Mediterranean region through dynamic slab evolution from 3D numerical modeling.J. Geophys. Res.119, 5876–5902 (2014).

    Google Scholar 

  15. Vergés, J. & Fernandez, M. Tethys–Atlantic interaction along the Iberia–Africa plate boundary: the Betic–Rif orogenic system. Tectonophysics579, 144–172 (2012).

    Google Scholar 

  16. van Hinsbergen, D. J. J., Vissers, R. & Spakman, W. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics33, 393–419 (2014).

    Google Scholar 

  17. Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L. & Rossetti, F. Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics23, 1012 (2004).

    Google Scholar 

  18. De Lis Mancilla, F. et al. Slab rupture and delamination under the Betics and Rif constrained from receiver functions. Tectonophysics663, 225–237 (2015).

    Google Scholar 

  19. Garcia-Castellanos, D. & Villasenor, A. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc.Nature480, 359–363 (2011).

    Google Scholar 

  20. Levander, A. et al. Subduction-driven recycling of continental margin lithosphere. Nature515, 253–256 (2014).

    Google Scholar 

  21. Heit, B. et al. Tearing of the mantle lithosphere along the intermediate-depth seismicity zone beneath the Gibraltar Arc: the onset of lithospheric delamination. Geophys. Res. Lett.44, 4027–4035 (2017).

    Google Scholar 

  22. Gutscher, M. A. et al. The Gibraltar subduction: a decade of new geophysical data. Tectonophysics574–575, 72–91 (2012).

    Google Scholar 

  23. Neres, M. et al. Lithospheric deformation in the Africa–Iberia plate boundary: improved neotectonic modeling testing a basal-driven Alboran plate. J. Geophys. Res. Solid Earth121, 6566–6596 (2016).

    Google Scholar 

  24. Pérouse, E., Vernant, P., Chéry, J., Reilinger, R. & McClusky, S. Active surface deformation and sub-lithospheric processes in the western Mediterranean constrained by numerical models. Geology38, 823–826 (2010).

    Google Scholar 

  25. Jimenez-Munt, I. & Negredo, A. M. Neotectonic modelling of the western part of the Africa–Eurasia plate boundary: from the Mid-Atlantic ridge to Algeria. Earth Planet. Sci. Lett.205, 257–271 (2003).

    Google Scholar 

  26. Pérouse, E. et al. Bridging onshore and offshore present-day kinematics of central and eastern Mediterranean: implications for crustal dynamics and mantle flow. Geochem. Geophys. Geosyst.13, 1213–1225 (2012).

    Google Scholar 

  27. Flecker, R. et al. Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change. Earth Sci. Rev.150, 365–392 (2015).

    Google Scholar 

  28. Capella, W. et al. Thick-skinned tectonics closing the Rifian Corridor. Tectonophysics710–711, 249–265 (2017).

    Google Scholar 

  29. Fadil, A. et al. Active tectonics of the western Mediterranean: geodetic evidence for rollback of a delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco. Geology34, 529–532 (2006).

    Google Scholar 

  30. Petit, C. et al. Crustal structure and gravity anomalies beneath the Rif, northern Morocco: implications for the current tectonics of the Alboran region. Geophys J. Int202, 640–652 (2015).

    Google Scholar 

  31. Baratin, L.-M. et al. Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: insights from gravity data and numerical modeling. Earth Planet. Sci. Lett.454, 113–120 (2016).

    Google Scholar 

  32. Diaz, J., Gil, A., Carbonell, R., Gallart, J. & Harnafi, M. Constraining the crustal root geometry beneath Northern Morocco. Tectonophysics689, 14–24 (2016).

    Google Scholar 

  33. Grevemeyer, I., Gràcia, E., Villaseñor, A., Leuchters, W. & Watts, A. B. Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: constraints from an offshore-onshore seismological network and swath bathymetry data. J. Geophys. Res. Earth Sci.120, 8248–8365 (2015).

    Google Scholar 

  34. Palano, M., González, P. J. & Fernandez, J. The diffuse plate boundary of Nubia and Iberia in the Western Mediterranean: crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth Planet. Sci. Lett.430, 439–447 (2015).

    Google Scholar 

  35. Cunha, T. A. et al. Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: a reassessment including recent structural, seismic and geodetic data. Geophys J. Int.188, 850–872 (2012).

    Google Scholar 

  36. O’Neill, C., Müller, D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst.6, Q04003 (2005).

    Google Scholar 

  37. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans. J. Geophys. Res.117, B09101 (2012).

    Google Scholar 

  38. Stotz, I. L., Iaffaldano, G. & Davies, D. R. Late Miocene Pacific plate kinematic change explained with coupled global models of mantle and lithosphere dynamics. Geophys. Res. Lett.44, 7177–7186 (2017).

    Google Scholar 

  39. Wang, C., Gordon, R. G. & Zhang, T. Bounds on geologically current rates of motion of groups of hot spots. Geophys. Res. Lett.44, 6048–6056 (2017).

    Google Scholar 

  40. Debayle, E. & Ricard, Y. Seismic observations of large-scale deformation at the bottom of fast-moving plates. Earth Planet. Sci. Lett.376, 165–177 (2013).

    Google Scholar 

  41. Zheng, L., Gordon, R. G. & Kreemer, C. Absolute plate velocities from seismic anisotropy: importance of correlated errors. J. Geophys. Res. Solid Earth119, 7336–7352 (2014).

  42. Becker, T. W., Schaeffer, A. J., Lebedev, S. & Conrad, C. P. Toward a generalized plate motion reference frame. Geophys. Res. Lett.42, 3188–3196 (2015).

    Google Scholar 

  43. Koulali, A. et al. New GPS constraints on active deformation along the Africa–Iberia plate boundary. Earth Planet. Sci. Lett.308, 211–217 (2011).

    Google Scholar 

  44. Platt, J. P., Behr, W. M., Johanesen, K. & Williams, J. R. The Betic–Rif Arc and its orogenic hinterland: a review. Annu. Rev. Earth Planet. Sci.41, 313–357 (2013).

    Google Scholar 

  45. Duggen, S., Hoernle, K., Van der Bogaard, P. & Garbe-Schönenberg, D. Post-collisional transition from subduction-to intraplate-type magmatism: evidence from continental-edge delamination of subcontinental lithosphere. J. Petrol.46, 1155–1201 (2005).

    Google Scholar 

  46. Giaconia, F. et al. Compressional tectonic inversion of the Algero–Balearic basin: Latemost Miocene to present oblique convergence at the Palomares margin (Western Mediterranean). Tectonics34, 1516–1543 (2015).

    Google Scholar 

  47. Echeverria, A., Khazaradze, G., Asensio, E. & Gárate, J. Crustal deformation in eastern Betics from CuaTeNeo GPS network. Tectonophysics608,600–612 (2013).

    Google Scholar 

  48. de Lis Mancilla, F. et al. Delamination in the Betic Range: deep structure, seismicity, and GPS motion. Geology41, 307–310 (2013).

    Google Scholar 

  49. Lafosse, M. et al. Evidence of quaternary transtensional tectonics in the Nekor basin (NE Morocco). Basin Res.29, 470–489 (2016).

    Google Scholar 

  50. Vernant, P. et al. Geodetic constraints on active tectonics of the Western Mediterranean: implications for the kinematics and dynamics of the Nubia–Eurasia plate boundary zone. J. Geodyn.49, 123–129 (2010).

    Google Scholar 

  51. Segal, G. & Praagman, N. P. The SEPRAN FEM package Technical report (Ingenieursbureau Sepra, Leidschendam, 2005).

  52. Spakman, W. & Nyst, M. Inversion of relative motion data for estimates of the velocity gradient field and fault slip. Earth Planet. Sci. Lett.203, 577–591 (2002).

    Google Scholar 

  53. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys J. Int. 181, 1–80 (2010).

    Google Scholar 

  54. Fernandes, R. M. S. The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophys. Res. Lett.30, 1828 (2003).

    Google Scholar 

  55. Fernandes, R., Miranda, J M., Delvaux, D., Stamps, D S. & Saria, E. Re-evaluation of the kinematics of Victoria Block using continuous GNSS data. Geophys. Res. Lett.193, 1–10 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank P. Vernant for helpful comments, A. Villasenor for help with obtaining the regional hypocentral data and M. Bezada for sharing his regional tomography model. W.S. and M.V.C. acknowledge financial and computational support from ISES, the Netherlands research centre for Integrated Solid Earth Science. W.S. also acknowledges support from the Research Council of Norway through its Centres of Excellence funding scheme, project number 223272. D.J.J.v.H. acknowledges ERC Starting Grant 306810 (SINK) and NWO Vidi grant 864.11.004.

Author information

Authors and Affiliations

Authors

Contributions

W.S. conceived and designed the research and contributed the GPS analysis. M.V.C contributed the numerical modelling with support from A.P.vd.B. D.J.J.v.H. contributed the geological component. W.S. wrote the paper with contributions from D.J.J.v.H.

Corresponding author

Correspondence to Wim Spakman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables

Videos

Supplementary Video 1

Illustration of tomographically imaged mantle structure

Supplementary Video 2

3D numerical models of RGB subduction evolution (G-model, view from the top)

Supplementary Video 3

3D numerical models of RGB subduction evolution (G-model, view from the NE)

Supplementary Video 4

3D numerical models of RGB subduction evolution (B-model, view from the NE)

Supplementary Video 5

Various models of GPS motion inversion and model quality estimates as a function of applied regularization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spakman, W., Chertova, M.V., van den Berg, A. et al. Puzzling features of western Mediterranean tectonics explained by slab dragging. Nature Geosci 11, 211–216 (2018). https://doi.org/10.1038/s41561-018-0066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-018-0066-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing