Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Energy efficiency drives the global seasonal distribution of birds

Abstract

The uneven distribution of biodiversity on Earth is one of the most general and puzzling patterns in ecology. Many hypotheses have been proposed to explain it, based on evolutionary processes or on constraints related to geography and energy. However, previous studies investigating these hypotheses have been largely descriptive due to the logistical difficulties of conducting controlled experiments on such large geographical scales. Here, we use bird migration—the seasonal redistribution of approximately 15% of bird species across the world—as a natural experiment for testing the species–energy relationship, the hypothesis that animal diversity is driven by energetic constraints. We develop a mechanistic model of bird distributions across the world, and across seasons, based on simple ecological and energetic principles. Using this model, we show that bird species distributions optimize the balance between energy acquisition and energy expenditure while taking into account competition with other species. These findings support, and provide a mechanistic explanation for, the species–energy relationship. The findings also provide a general explanation of migration as a mechanism that allows birds to optimize their energy budget in the face of seasonality and competition. Finally, our mechanistic model provides a tool for predicting how ecosystems will respond to global anthropogenic change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model description.
Fig. 2: Contrast between empirical patterns in the global spatial distribution of terrestrial birds across seasons and the same patterns simulated through the overall best-fit model.
Fig. 3: Latitudinal trends for empirical and simulated patterns in the global spatial distribution of terrestrial birds across seasons.
Fig. 4: Predictive value of the overall best-fit model contrasted with the best-guess model and the null models.

Similar content being viewed by others

References

  1. Wright, D. H. Species–energy theory: an extension of species–area theory. Oikos 41, 496–506 (1983).

    Article  Google Scholar 

  2. Evans, K. L., Warren, P. H. & Gaston, K. J. Species–energy relationships at the macroecological scale: a review of the mechanisms. Biol. Rev. 80, 1–25 (2005).

    Article  PubMed  Google Scholar 

  3. Lotka, A. Contribution to the energetics of evolution. Proc. Natl Acad. Sci. USA 8, 147–151 (1922).

    Article  CAS  PubMed  Google Scholar 

  4. Brown, J. H., Marquet, P. A. & Taper, M. L. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573–584 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Horak, D., Tószögyová, A. & Storch, D. Relative food limitation drives geographical clutch size variation in South African passerines: a large-scale test of Ashmole’s seasonality hypothesis. Glob. Ecol. Biogeogr. 24, 437–447 (2015).

    Article  Google Scholar 

  6. Fryxell, J. M. et al. Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proc. Natl Acad. Sci. USA 105, 19114–19119 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Willig, M., Kaufman, D. M. & Stevens, R. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    Article  Google Scholar 

  9. Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Rahbek, C. et al. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc. R. Soc. B. 274, 165–174 (2007).

    Article  PubMed  Google Scholar 

  11. Kirby, J. S. et al. Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conserv. Int. 18, S49–S73 (2008).

    Article  Google Scholar 

  12. Moreau, R. E. The place of Africa in the Palaearctic migration system. J. Anim. Ecol. 21, 250–271 (1952).

    Article  Google Scholar 

  13. Herrera, C. M. On the breeding distribution pattern of European migrant birds: Macarthuras theme reexamined. Auk 3, 496–509 (1978).

    Google Scholar 

  14. Hurlbert, A. H. & Haskell, J. P. The effect of energy and seasonality on avian species richness and community composition. Am. Nat. 161, 83–97 (2003).

    Article  PubMed  Google Scholar 

  15. Dalby, L., McGill, B. J., Fox, A. D. & Svenning, J.-C. Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation. Glob. Ecol. Biogeogr. 23, 550–562 (2014).

    Article  Google Scholar 

  16. Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674 (2015).

    Article  Google Scholar 

  17. Somveille, M., Manica, A., Butchart, S. H. M. & Rodrigues, A. S. L. Mapping global diversity patterns for migratory birds. PLoS ONE 8, e70907 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Jetz, W., Rahbek, C. & Colwell, R. K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecol. Lett. 7, 1180–1191 (2004).

    Article  Google Scholar 

  20. Orme, C. D. L. et al. Global patterns of geographic range size in birds. PLoS Biol. 4, e208 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fjeldsa, J., Bowie, R. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).

    Article  Google Scholar 

  22. Fretwell, F. in Migrant Birds in the Neotropics: Ecology, Behaviour, Distribution and Conservation (eds Keast, A. & Morton, E.) 517–527 (Smithsonian Institution Press, Washington, DC, 1980).

  23. Cox, G. W. The evolution of avian migration systems between temperate and tropical regions of the New World. Am. Nat. 126, 451–474 (1985).

    Article  Google Scholar 

  24. Cox, G. W. The role of competition in the evolution of migration. Evolution 22, 180–192 (1968).

    Article  PubMed  Google Scholar 

  25. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  26. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth's terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bird Species Distribution Maps of the World (BirdLife International and NatureServe, 2012); http://datazone.birdlife.org/species/requestdis

  29. Sahr, K., White, D. & Kimerling, A. J. Geodesic discrete global grid systems. Cartogr. Geogr. Inf. Sci. 30, 121–134 (2003).

    Article  Google Scholar 

  30. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  31. NASA Earth Observatory Global Maps (NASA, accessed 10 March 2014); http://earthobservatory.nasa.gov/GlobalMaps

  32. Damuth, J. Body size in mammals. Nature 290, 699–700 (1981).

    Article  Google Scholar 

  33. Damuth, J. Interspecific allometry of population-density in mammals and other animals: the independence of body-mass and population energy-use. Biol. J. Linn. Soc. 31, 193–246 (1987).

    Article  Google Scholar 

  34. White, E. P., Ernest, S. K. M., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007).

    Article  PubMed  Google Scholar 

  35. Dunning, J. B. (ed.) Handbook of Avian Body Masses (CRC Press, Boca Raton, 1993).

  36. Porter, W. P. & Kearney, M. Size, shape, and the thermal niche of endotherms. Proc. Natl Acad. Sci. USA 106, 19666–19672 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Kendeigh, S. C. Tolerance of cold and Bergmann’s rule. Auk 86, 13–25 (1969).

    Article  Google Scholar 

  38. Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. 281, 20141097 (2014).

    Article  Google Scholar 

  39. Scholander, P., Hock, R.., Walters, V., Johnson, F. & Irving, L. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99, 237–258 (1950).

    Article  CAS  PubMed  Google Scholar 

  40. H-Acevedo, D. & Currie, D. J. Does climate determine broad-scale patterns of species richness? A test of the causal link by natural experiment. Glob. Ecol. Biogeogr. 12, 461–473 (2003).

    Article  Google Scholar 

  41. Davies, R. G. et al. Topography, energy and the global distribution of bird species richness. Proc. R. Soc. B 274, 1189–1197 (2007).

    Article  PubMed  Google Scholar 

  42. Boucher-Lalonde, V., Kerr, J. T. & Currie, D. J. Does climate limit species richness by limiting individual species' ranges? Proc. R. Soc. B 281, 20132695 (2014).

    Article  PubMed  Google Scholar 

  43. Storch, D. et al. Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity. Ecol. Lett. 9, 1308–1320 (2006).

    Article  PubMed  Google Scholar 

  44. Pigot, A. L., Owens, I. P. F. & Orme, C. D. L. The environmental limits to geographic range expansion in birds. Ecol. Lett. 13, 705–715 (2010).

    Article  PubMed  Google Scholar 

  45. Dolman, P. M. & Sutherland, W. J. The response of bird populations to habitat loss. Ibis 137, 38–46 (1994).

    Article  Google Scholar 

  46. Goss-Custard, J. D. Competition for food and interference among waders. Ardea 14, 721–739 (1980).

    Google Scholar 

  47. Pawar, S., Dell, A. I. & Savage, V. M. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486, 485–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Greenberg, R., Ortiz, J. S. & Caballero, C. M. Aggressive competition for critical resources among migratory birds in the neotropics. Bird Conserv. Int. 4, 115–127 (2010).

    Article  Google Scholar 

  49. Pele, O. & Werman, M. Fast and robust Earth Mover’s Distances. In Proc. 2009 IEEE 12th Int. Conf. on Computer Vision. 460–467 (IEEE, 2010).

Download references

Acknowledgements

We are grateful to BirdLife International, NatureServe and all the volunteers who collected and compiled the data on the distribution of bird species, and to R. Green, M. Brooke, K. Gaston, B. Sutherland, B. Sheldon and B. Van Doren for discussions. M.S. was funded by an Entente Cordiale scholarship and an Edward Grey Institute postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.S. conceived the model and developed it with A.M and A.S.L.R. M.S. also performed the analyses with support from A.M., and drafted the paper with conceptual and editorial input from all authors.

Corresponding author

Correspondence to Marius Somveille.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–11, Supplementary Results, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somveille, M., Rodrigues, A.S.L. & Manica, A. Energy efficiency drives the global seasonal distribution of birds. Nat Ecol Evol 2, 962–969 (2018). https://doi.org/10.1038/s41559-018-0556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0556-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing