Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The origin and expansion of Pama–Nyungan languages across Australia

Abstract

It remains a mystery how Pama–Nyungan, the world’s largest hunter-gatherer language family, came to dominate the Australian continent. Some argue that social or technological advantages allowed rapid language replacement from the Gulf Plains region during the mid-Holocene. Others have proposed expansions from refugia linked to climatic changes after the last ice age or, more controversially, during the initial colonization of Australia. Here, we combine basic vocabulary data from 306 Pama–Nyungan languages with Bayesian phylogeographic methods to explicitly model the expansion of the family across Australia and test between these origin scenarios. We find strong and robust support for a Pama–Nyungan origin in the Gulf Plains region during the mid-Holocene, implying rapid replacement of non-Pama–Nyungan languages. Concomitant changes in the archaeological record, together with a lack of strong genetic evidence for Holocene population expansion, suggests that Pama–Nyungan languages were carried as part of an expanding package of cultural innovations that probably facilitated the absorption and assimilation of existing hunter-gatherer groups.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inferred origin of the Pama–Nyungan language family tree.
Fig. 2: Diversification of the Pama–Nyungan language family.
Fig. 3: Geographical dispersal of Pama–Nyungan languages.

Similar content being viewed by others

References

  1. Bellwood, P. First Migrants: Ancient Migration in Global Perspective (Wiley Blackwell, Chichester, 2013).

    Google Scholar 

  2. McConvell, P. & Bowern, C. The prehistory and internal relationships of Australian languages. Lang. Linguist. Compass 5, 19–32 (2011).

    Article  Google Scholar 

  3. Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Tobler, R. et al. Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature 544, 180–184 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Evans, N. & McConvell, P. in Archaeology and Language II: Archaeological Data and Linguistic Hypotheses (eds Blench, R. & Spriggs, M.) 174–192 (Routledge, London, 1998).

  6. Bowern, C. in Linguistic Areas (eds Matras, Y. et al.) 244–265 (Palgrave Macmillan, London, 2006).

  7. Evans, N. & Jones, R. in Archaeology and Linguistics: Aboriginal Australia in Global Perspective (eds McConvell, P. & Evans, N.) 385–417 (Oxford Univ. Press, Melbourne & New York, 1997).

  8. O’Grady, G. N. & Hale, K. L. in Australian Languages: Classification and the Comparative Method (eds Bowern, C. & Koch, H.) 69–92 (John Benjamins, Amsterdam, 2004).

  9. McConvell, P. Backtracking to Babel: the chronology of Pama–Nyungan expansion in Australia. Archaeol. Ocean. 31, 125–144 (1996).

    Article  Google Scholar 

  10. Pugach, I., Delfin, F., Gunnarsdóttir, E., Kayser, M. & Stoneking, M. Genome-wide data substantiate Holocene gene flow from India to Australia. Proc. Natl Acad. Sci. USA 110, 1803–1808 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams, A. N., Ulm, S., Turney, C. S. M., Rohde, D. & White, G. Holocene demographic changes and the emergence of complex societies in prehistoric Australia. PLoS ONE 10, e0128661 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Clendon, M. Reassessing Australia’s linguistic prehistory. Curr. Anthropol. 47, 39–61 (2006).

    Article  Google Scholar 

  13. Veth, P. Islands in the interior: a model for the colonization of Australia’s arid zone. Archaeol. Ocean. 24, 81–92 (1989).

    Article  Google Scholar 

  14. Smith, M. The Archaeology of Australia’s Deserts (Cambridge Univ. Press, Cambridge, 2013).

    Book  Google Scholar 

  15. Williams, A. N., Ulm, S., Cook, A. R., Langley, M. C. & Collard, M. Human refugia in Australia during the last glacial maximum and terminal Pleistocene: a geospatial analysis of the 25–12 ka Australian archaeological record. J. Archaeol. Sci. 40, 4612–4625 (2013).

    Article  Google Scholar 

  16. Dixon, R. M. W. The Rise and Fall of Languages (Cambridge Univ. Press, Cambridge & New York, 1997).

    Book  Google Scholar 

  17. Dixon, R. M. W. in Areal Diffusion and Genetic Inheritance: Problems in Comparative Linguistics (eds Aikenvald, A. Y. & Dixon, R. M. W.) 64–104 (Oxford Univ. Press, Oxford & New York, 2001).

  18. Bowern, C. & Atkinson, Q. Computational phylogenetics and the internal structure of Pama–Nyungan. Language 88, 817–845 (2012).

    Article  Google Scholar 

  19. O’Grady, G. N., Wurm, S. A. & Hale, K. L. Aboriginal Languages of Australia: (a Preliminary Classification) (Univ. Victoria, Victoria, BC, 1966).

    Google Scholar 

  20. Bergsland, K. & Vogt, H. On the validity of glottochronology. Curr. Anthropol. 3, 115–153 (1962).

    Article  Google Scholar 

  21. Redd, A. J. et al. Gene flow from the Indian subcontinent to Australia: evidence from the Y chromosome. Curr. Biol. 12, 673–677 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Hudjashov, G. et al. Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis. Proc. Natl Acad. Sci. USA 104, 8726–8730 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McEvoy, B. P. et al. Whole-genome genetic diversity in a sample of Australians with deep Aboriginal ancestry. Am. J. Hum. Genet. 87, 297–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bergström, A. et al. Deep roots for Aboriginal Australian Y chromosomes. Curr. Biol. 26, 809–813 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. Science 337, 957–960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grollemund, R. et al. Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc. Natl Acad. Sci. USA 112, 13296–13301 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bowern, C. Chirila: contemporary and historical resources for the Indigenous languages of Australia. Lang. Doc. Conserv. 10, 1–45 (2016).

  29. O’Grady, G. N. in Australian Linguistic Studies (ed. Wurm, S. A.) 107–139 (Pacific Linguistics, Canberra, 1979).

  30. Blake, B. J. in Aboriginal Linguistics 1 1–90 (Univ. New England, Armidale, 1988).

  31. Evans, N. in Aboriginal Linguistics 1 91–110 (Univ. New England, Armidale, 1988).

  32. Blake, B. J. in Language and History: Essays in Honour of Luise A. Hercus (eds Austin, P. et al.) 49–66 (Australian National Univ., Canberra, 1990).

  33. Evans, N. Australian languages reconsidered: a review of Dixon (2002). Ocean. Linguist. 44, 242–286 (2005).

    Article  Google Scholar 

  34. Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hill, J. H. in Language, Archaeology, and History (ed. Terrell, J.) 257–282 (Bergin and Garvey, Westport, 2001).

  36. Bowern, C. et al. Does lateral transmission obscure inheritance in hunter-gatherer languages? PLoS ONE 6, e25195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greenhill, S. J., Currie, T. E. & Gray, R. D. Does horizontal transmission invalidate cultural phylogenies? Proc. R. Soc. B 276, 2299–2306 (2009).

  38. Gray, R. D., Drummond, A. J. & Greenhill, S. J. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323, 479–483 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Lourandos, H. Intensification: a late Pleistocene–Holocene archaeological sequence from southwestern Victoria. Archaeol. Ocean. 18, 81–94 (1983).

    Article  Google Scholar 

  40. Lourandos, H. Continent of Hunter-gatherers: New Perspectives in Australian Prehistory (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  41. Haberle, S. G. & David, B. Climates of change: human dimensions of Holocene environmental change in low latitudes of the PEPII transect. Quat. Int. 118, 165–179 (2004).

    Article  Google Scholar 

  42. McNiven, I. J., De Maria, N., Weisler, M. & Lewis, T. Darumbal voyaging: intensifying use of central Queensland’s Shoalwater Bay islands over the past 5000 years. Archaeol. Ocean. 49, 2–42 (2014).

    Article  Google Scholar 

  43. Smith, M. A. The antiquity of seedgrinding in arid Australia. Archaeol. Ocean. 21, 29–39 (1986).

    Article  Google Scholar 

  44. David, B. & Cole, N. Rock art and inter-regional interaction in northeastern Australian prehistory. Antiquity 64, 788–806 (1990).

    Article  Google Scholar 

  45. Hiscock, P. Pattern and context in the Holocene proliferation of backed artifacts in Australia. Archeol. Pap. Am. Anthropol. Assoc. 12, 163–177 (2002).

    Article  Google Scholar 

  46. Hiscock, P. The Archaeology of Ancient Australia (Routledge, London & New York, 2008).

    Google Scholar 

  47. Kayser, M. et al. Independent histories of human Y chromosomes from Melanesia and Australia. Am. J. Human. Genet. 68, 173–190 (2001).

    Article  CAS  Google Scholar 

  48. Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. Demic expansions and human evolution. Science 259, 639–646 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Richerson, P. J., Boyd, R. & Henrich, J. Gene-culture coevolution in the age of genomics. Proc. Natl Acad. Sci. USA 107, 8985–8992 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Evans, N. The Non-Pama–Nyungan Languages of Northern Australia: Comparative Studies of the Continent’s Most Linguistically Complex Region (Australian National Univ., Canberra, 2003).

    Google Scholar 

  52. Hock, H. H. & Joseph, B. D. Language History, Language Change, and Language Relationship: An Introduction to Historical and Comparative Linguistics (Mouton de Gruyter, Berlin, 1996).

    Google Scholar 

  53. Cysouw, M. & Good, J. Languoid, doculect, and glossonym: formalizing the notion ‘language’. Lang. Doc. Conserv. 7, 331–359 (2013).

    Google Scholar 

  54. Bouckaert, R. R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS. Comput. Biol. 10, e1003537 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ayres, D. L. et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 61, 170–173 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gray, R. D. & Atkinson, Q. D. Language-tree divergence times support the Anatolian theory of Indo-European origin. Nature 426, 435–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Kitchen, A., Ehret, C., Assefa, S. & Mulligan, C. J. Bayesian phylogenetic analysis of semitic languages identifies an Early Bronze Age origin of Semitic in the Near East. Proc. R. Soc. B 276, 2703–2710 (2009).

  58. Lee, S. & Hasegawa, T. Bayesian phylogenetic analysis supports an agricultural origin of Japonic languages. Proc. R. Soc. Lond. B 278, 3662–3669 (2011).

  59. Lee, S. & Hasegawa, T. Evolution of the Ainu language in space and time. PLoS ONE 8, e62243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Walker, R. S. & Ribeiro, L. A. Bayesian phylogeography of the Arawak expansion in lowland South America. Proc. R. Soc. B 278, 2562–2567 (2011).

  61. Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. Birth–death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl Acad. Sci. USA 110, 228–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778 (2008).

    Article  PubMed  Google Scholar 

  63. O’Grady, G. N., Voegelin, C. F. & Voegelin, F. M. Languages of the world: Indo-Pacific fascicle six. Anthropol. Ling. 8, 1–197 (1966).

    Google Scholar 

  64. Wurm, S. A., Mühlhäusler, P. & Tryon, D. T. Atlas of Languages of Intercultural Communication in the Pacific, Asia, and the Americas: Vol I: Maps. Vol II: Texts (Walter de Gruyter, Berlin, 1996).

  65. Koch, H. & Nordlinger, R. in The Languages and Linguistics of Australia: A Comprehensive Guide 23–90 (Walter de Gruyter, Berlin, 2014).

  66. Tuffley, C. & Steel, M. Modeling the covarion hypothesis of nucleotide substitution. Math. Biosci. 147, 63–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Nicholls, G. K. & Gray, R. D. Dated ancestral trees from binary trait data and their application to the diversification of languages. J. R. Stat. Soc. B Stat. Methodol. 70, 545–566 (2008).

    Article  Google Scholar 

  68. Alekseyenko, A. V., Lee, C. J. & Suchard, M. A. Wagner and Dollo: a stochastic duet by composing two parsimonious solos. Syst. Biol. 57, 772–784 (2008).

    Article  PubMed  Google Scholar 

  69. Atkinson, Q., Nicholls, G., Welch, D. & Gray, R. From words to dates: water into wine, mathemagic or phylogenetic inference? Trans. Philol. Soc. 103, 193–219 (2005).

    Article  Google Scholar 

  70. Hasegawa, M., Kishino, H. & Yano, T. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    Article  CAS  PubMed  Google Scholar 

  71. Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Chang, W., Cathcart, C., Hall, D. & Garrett, A. Ancestry-constrained phylogenetic analysis supports the Indo-European steppe hypothesis. Language 91, 194–244 (2015).

    Article  Google Scholar 

  73. Pagel, M., Atkinson, Q. D. & Meade, A. Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature 449, 717–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Veth, P. Origins of the Western Desert language: convergence in linguistic and archaeological space and time models. Archaeol. Ocean. 35, 11–19 (2000).

    Article  Google Scholar 

  75. Thorley, P. & Gunn, R. Archaeological research from the eastern border lands of the Western Desert. In Paper for the Western Desert Origins Workshop (Australian Linguistic Institute, Canberra, 1996).

  76. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  Google Scholar 

  77. Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Bouckaert, R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ 4, e2406 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stewart, W. J. Introduction to the Numerical Solution of Markov Chains Vol. 41 (Princeton Univ. Press, Princeton, 1994).

  80. Skiena, S. Dijkstra’s Algorithm Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica 225–227 (Addison-Wesley, Reading, MA, 1990).

Download references

Acknowledgements

We thank P. Hiscock, D. Kühnert, M. Smith, M. Stoneking, P. Veth and A. Williams for helpful advice. R.R.B. and Q.D.A. were supported by a Royal Society of New Zealand Marsden grant (UOA1308). Q.D.A. was supported by a Rutherford Discovery Fellowship (RDF-UOA1101). C.B. is supported by National Science Foundation grants BCS-0844550 and BCS-1423711.

Author information

Authors and Affiliations

Authors

Contributions

C.B. and Q.D.A. conceived the study. C.B. collected and prepared the data. R.R.B. designed and performed the analyses and prepared the figures and Methods, with input from Q.D.A. and C.B. Q.D.A. wrote the main text with extensive input from C.B. and R.R.B.

Corresponding author

Correspondence to Quentin D. Atkinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary Tables 1–8, Supplementary Methods, Supplementary Notes 1–2, Supplementary References

Life Sciences Reporting Summary

Supplementary Data File 1

BEAST 2 (https://www.beast2.org/) XML file containing the cognate presence/absence data, model parameterization and priors for our main analysis

Supplementary Data File 2

Annotated maximum clade credibility tree for the main analysis (from Figure 2 and Supplementary Figure 4) in the nexus format

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouckaert, R.R., Bowern, C. & Atkinson, Q.D. The origin and expansion of Pama–Nyungan languages across Australia. Nat Ecol Evol 2, 741–749 (2018). https://doi.org/10.1038/s41559-018-0489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-018-0489-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing