Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Forest extent and deforestation in tropical Africa since 1900

Abstract

Accurate estimates of historical forest extent and associated deforestation rates are crucial for quantifying tropical carbon cycles and formulating conservation policy. In Africa, data-driven estimates of historical closed-canopy forest extent and deforestation at the continental scale are lacking, and existing modelled estimates diverge substantially. Here, we synthesize available palaeo-proxies and historical maps to reconstruct forest extent in tropical Africa around 1900, when European colonization accelerated markedly, and compare these historical estimates with modern forest extent to estimate deforestation. We find that forests were less extensive in 1900 than bioclimatic models predict. Resultantly, across tropical Africa, ~ 21.7% of forests have been deforested, yielding substantially slower deforestation than previous estimates (35–55%). However, deforestation was heterogeneous: West and East African forests have undergone almost complete decline (~ 83.3 and 93.0%, respectively), while Central African forests have expanded at the expense of savannahs (~ 1.4% net forest expansion, with ~ 135,270 km2 of savannahs encroached). These results suggest that climate alone does not determine savannah and forest distributions and that many savannahs hitherto considered to be degraded forests are instead relatively old. These data-driven reconstructions of historical biome distributions will inform tropical carbon cycle estimates, carbon mitigation initiatives and conservation planning in both forest and savannah systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Palaeo-proxy sites and locations of historical maps used as inputs for modelling the forest extent in the year ad 1900.
Fig. 2: Modelled distribution of forest and savannah for ad 1900 and ad 2000.

Similar content being viewed by others

References

  1. Houghton, R. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).

    Article  Google Scholar 

  2. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

    Article  Google Scholar 

  4. Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Houghton, R. A. & Hackler, J. L. in Effects of Land-Use Change on Atmospheric CO 2 Concentrations 301–327 (Springer, New York, 1994).

  7. Bryant, D. et al. The Last Frontier Forests: Ecosystems and Economies on the Edge. What is the Status of the World's Remaining Large Natural Forest Ecosystems? (World Resources Institute, Washington, DC, 1997).

  8. Fairhead, J. & Leach, M. Reframing Deforestation: Global Analyses and Local Realities with Studies in West Africa (Routledge, London and New York, 1998).

  9. Bond, W. & Zaloumis, N. P. The deforestation story: testing for anthropogenic origins of Africa’s flammable grassy biomes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150170 (2016).

    Article  Google Scholar 

  10. Ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).

    Article  Google Scholar 

  12. Sayer, J., Harcourt, C. S. & Collins, N. M. The Conservation Atlas of Tropical Forests: Africa (Springer, Basingstoke, 1992).

  13. Willcock, S. et al. Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Glob. Change Biol. 22, 2787–2800 (2016).

    Article  PubMed  Google Scholar 

  14. Olson, D. M. & Dinerstein, E. The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12, 502–515 (1998).

    Article  Google Scholar 

  15. Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

    Article  CAS  Google Scholar 

  16. Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Salzmann, U. & Hoelzmann, P. The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene 15, 190–199 (2005).

    Article  Google Scholar 

  18. Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Atlas of Forest and Landscape Restoration Opportunities (World Resources Institute, 2014).

  20. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: the 2012 Revision (Food and Agriculture Organization, 2012).

  21. Searchinger, T. D. et al. High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat. Clim. Change 5, 481–486 (2015).

    Article  Google Scholar 

  22. Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).

    Article  Google Scholar 

  23. Parr, C. L., Lehmann, C. E., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014).

    Article  PubMed  Google Scholar 

  24. Oyugi, J. O., Brown, J. S. & Whelan, C. J. Effects of human disturbance on composition and structure of Brachystegia woodland in Arabuko‐Sokoke Forest, Kenya. Afr. J. Ecol. 46, 374–383 (2008).

    Article  Google Scholar 

  25. Chevalier, A. L. Afrique Centrale Française: Récit du Voyage de la Mission (A. Challamel, Paris, 1907).

  26. Börjeson, L. A History Under Siege: Intensive Agriculture in the Mbulu Highlands, Tanzania, 19th Century to the Present. PhD thesis, Stockholm Univ. (2004).

  27. Hansen, M. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Griffith, D. M. et al. Comment on “The extent of forest in dryland biomes”. Science 358, eaao1309 (2017).

    Article  CAS  Google Scholar 

  30. Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157, 89–100 (2002).

    Article  Google Scholar 

  31. Global Forest Resources Assessment 2005: Progress Towards Sustainable Forest Management (Food and Agriculture Organization of the United Nations, 2006).

  32. Leach, M. & Fairhead, J. Challenging neo‐Malthusian deforestation analyses in West Africa’s dynamic forest landscapes. Popul. Dev. Rev. 26, 17–43 (2000).

    Article  Google Scholar 

  33. Wilcox, B. A. Tropical forest resources and biodiversity: the risks of forest loss and degradation. Unasylva 46, 43–49 (1995).

    Google Scholar 

  34. Bishaw, B. Deforestation and land degradation in the Ethiopian highlands: a strategy for physical recovery. Northeast Afr. Stud. 8, 7–25 (2001).

    Article  Google Scholar 

  35. Linder, H. P. et al. The partitioning of Africa: statistically defined biogeographical regions in sub‐Saharan Africa. J. Biogeogr. 39, 1189–1205 (2012).

    Article  Google Scholar 

  36. Aubreville, A. M. A. The disappearance of the tropical forests of Africa. Unasylva 1, 5–11 (1947).

    Google Scholar 

  37. Runge, J. Holocene landscape history and palaeohydrology evidenced by stable carbon isotope (δ13C) analysis of alluvial sediments in the Mbari valley (5° N/23° E), Central African Republic. Catena 48, 67–87 (2002).

    Article  Google Scholar 

  38. Delègue, M., Fuhr, M., Schwartz, D., Mariotti, A. & Nasi, R. Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia 129, 106–113 (2001).

    Article  PubMed  Google Scholar 

  39. Moisel, M. Bayerische Staatsbibliothek (Reimer, Berlin, 1913).

  40. Shantz, H. L. & Marbut, C. F. The Vegetation and Soils of Africa (National Research Council & American Geographical Society, 1923).

  41. Cuni-Sanchez, A. et al. African savanna–forest boundary dynamics: a 20-year study. PLoS ONE 11, e0156934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitchard, E. T. & Flintrop, C. M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120406 (2013).

    Article  Google Scholar 

  43. Vincens, A. et al. Forest response to climate changes in Atlantic Equatorial Africa during the last 4000 years bp and inheritance on the modern landscapes. J. Biogeogr. 26, 879–885 (1999).

    Article  Google Scholar 

  44. Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Van Gemerden, B. S., Olff, H., Parren, M. P. & Bongers, F. The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. J. Biogeogr. 30, 1381–1390 (2003).

    Article  Google Scholar 

  46. Debroux, L., Hart, T., Kaimowitz, D., Karsenty, A. & Topa, G. Forests in Post-Conflict Democratic Republic of Congo: Analysis of a Priority Agenda (Center for International Forestry Research, the World Bank and CIRAD, 2007).

  47. Laurance, W. F., Campbell, M. J., Alamgir, M. & Mahmoud, M. I. Road expansion and the fate of Africa’s tropical forests. Front. Ecol. Evol. 5, 75 (2017).

    Article  Google Scholar 

  48. Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120295 (2013).

    Article  Google Scholar 

  49. Williams, J. Variations in tree cover in North America since the last glacial maximum. Glob. Planet. Change 35, 1–23 (2003).

    Article  Google Scholar 

  50. Aleman, J. et al. Reconstructing savanna tree cover from pollen, phytoliths and stable carbon isotopes. J. Veg. Sci. 23, 187–197 (2012).

    Article  Google Scholar 

  51. Hamilton, A., Taylor, D. & Vogel, J. Early forest clearance and environmental degradation in south-west Uganda. Nature 320, 164–167 (1986).

    Article  Google Scholar 

  52. Lézine, A.-M. Les variations de la couverture forestière mésophile d’Afrique occidentale au cours de l’Holocène. C. R. Acad. Sci. Paris 307, 439–445 (1988).

    Google Scholar 

  53. Ballouche, A. & Neumann, K. A new contribution to the Holocene vegetation history of the West African Sahel: pollen from Oursi, Burkina Faso and charcoal from three sites in northeast Nigeria. Veg. Hist. Archaeobot. 4, 31–39 (1995).

    Article  Google Scholar 

  54. Reynaud-Farrera, I., Maley, J. & Wirrmann, D. Végétation et climat dans les forêts du sud-ouest Cameroun depuis 4770 ans bp: analyse pollinique des sédiments du lac Ossa. C. R. Acad. Sci. Paris 322, 749–755 (1996).

    Google Scholar 

  55. Vincens, A. et al. Changement majeur de la végétation du lac Sinnda (vallée du Niari, Sud-Congo) consécutif à l’assèchement climatique holocène supérieur: apport de la palynologie. C. R. Acad. Sci. Paris 318, 1521–1526 (1994).

    Google Scholar 

  56. Tossou, M. G. Recherche Palynologique sur la Végétation Holocène du Sud-Bénin (Afrique de l’Ouest). PhD thesis, Univ. Lome (2002).

  57. Ssemmanda, I. & Vincens, A. Végétation et climat dans le bassin du lac Albert (Ouganda, Zaïre) depuis 13000 ans bp: apport de la palynologie. C. R. Acad. Sci. Paris 316, 561–567 (1993).

    CAS  Google Scholar 

  58. Hamilton, A. C. Environmental History of East Africa: a Study of the Quaternary (Academic, London, 1982).

  59. Bonnefille, R. & Mohammed, U. Pollen-inferred climatic fluctuations in Ethiopia during the last 3000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 331–343 (1994).

    Article  Google Scholar 

  60. Laseski, R. A. Modern Pollen Data and Holocene Climate Change in Eastern Africa. PhD thesis, Brown Univ. (1983).

  61. Darbyshire, I., Lamb, H. & Umer, M. Forest clearance and regrowth in northern Ethiopia during the last 3000 years. Holocene 13, 537–546 (2003).

    Article  Google Scholar 

  62. Jolly, D. Evolution et Dynamique des Écosystèmes du Burundi: Pollen et Statistique. PhD thesis, Univ. d'Aix-Marseille II (1994).

  63. Lamb, H. F. Multi-proxy records of Holocene climate and vegetation change from Ethiopian Crater Lakes. Biol. Environ. 101B, 35–46 (2001).

  64. Elenga, H., Schwartz, D. & Vincens, A. Changements climatiques et action anthropique sur le littoral congolais au cours de l’Holocène. Bull. Soc. Géol. Fr. 163, 83–90 (1992).

    Google Scholar 

  65. Bonnefille, R. & Riollet, G. The Kashiru pollen sequence (Burundi) palaeoclimatic implications for the last 40,000 yr bp in tropical Africa. Quat. Res. 30, 19–35 (1988).

    Article  CAS  Google Scholar 

  66. Bonnefille, R., Riollet, G. & Buchet, G. Nouvelle séquence pollinique d’une tourbière de la crête Zaïre-Nil (Burundi). Rev. Palaeobot. Palynol. 67, 315–330 (1991).

    Article  Google Scholar 

  67. Moscol-Olivera, M. & Roche, E. Analyse palynologique d’une sequence sedimentaire holocene a musisi-karashoma (ktvu, rd congo). Influences climatiques et anthropiques sur l’environnement. Geo-Eco-Trop. 20, 1–26 (1996).

    Google Scholar 

  68. Marchant, R. & Taylor, D. Dynamics of montane forest in central Africa during the late Holocene: a pollen-based record from western Uganda. Holocene 8, 375–381 (1998).

    Article  Google Scholar 

  69. Taylor, D. Late Quaternary pollen records from two Ugandan mires: evidence for environmental changes in the Rukiga Highlands of southwest Uganda. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 283–300 (1990).

    Article  Google Scholar 

  70. Vincens, A. Nouvelle sequence pollinique du Lac Tanganyika: 30,000 ans d’histoire botanique et climatique du Bassin Nord. Rev. Palaeobot. Palynol. 78, 381–394 (1993).

    Article  Google Scholar 

  71. Bonnefille, R. et al. Palaeoenvironment of Lake Abijata, Ethiopia, during the past 2000 years. Geo. Soc. Spec. Publ. 25, 253–265 (1986).

    Article  Google Scholar 

  72. Vincens, A. Diagramme pollinique d’un sondage Pleistocene superieur—Holocene du Lac Bogoria (Kenya). Rev. Palaeobot. Palynol. 47, 169183–179192 (1986).

    Article  Google Scholar 

  73. Nakimera, I. The Impact of Human Activities and Climate on the Vegetation in the Lake Victoria Region and on the Rwenzori Mountain and its Neighbourhood. PhD thesis, Makerere Univ. (2001).

  74. Msaky, E. S., Livingstone, D. & Davis, O. K. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: V. Palynological evidence for deforestation and increased erosion. J. Paleolimnol. 34, 73–83 (2005).

    Article  Google Scholar 

  75. Bousman, C. et al. Palaeoenvironmental implications of late Pleistocene and Holocene valley fills in Blydefontein basin, Noupoort, CP, South Africa. Palaeoecol. Afr. 19, 43–67 (1988).

    Google Scholar 

  76. Scott, L. Holocene environmental change at western Orange Free State pans, South Africa, inferred from pollen analysis. Palaeoecol. Afr. 19, 109–118 (1988).

    Google Scholar 

  77. Scott, L. & Vogel, J. Short-term changes of climate and vegetation revealed by pollen analysis of hyrax dung in South Africa. Rev. Palaeobot. Palynol. 74, 283–291 (1992).

    Article  Google Scholar 

  78. Scott, L. & Steenkamp, M. Environmental history and recent human influence at coastal Lake Teza, KwaZulu-Natal. South Afr. J. Sci. 92, 348–350 (1996).

    CAS  Google Scholar 

  79. Scott, L. Late Quaternary forest history in Venda, southern Africa. Rev. Palaeobot. Palynol. 53, 1–10 (1987).

    Article  Google Scholar 

  80. Meadows, M. E., Baxter, A. J. & Adams, T. The late Holocene vegetation history of lowland fynbos, Verlorenvlei, southwestern Cape Province, South Africa. Hist. Biol. 9, 47–59 (1994).

    Article  Google Scholar 

  81. Baxter, A. J. Late Quaternary Palaeoenvironments of the Sandveld, Western Cape Province, South Africa. PhD thesis, Univ. Cape Town (1997).

  82. Vilimumbalo, S. Paléoenvironnements et Interprétations paléoclimatiques des dépôts palustres du Pléistocène supérieur et de l’Holocène du Rift Centrafricain au Sud du lac Kivu (Zaïre). PhD thesis, Univ. Liège (1993).

  83. Lamb, H., Darbyshire, I. & Verschuren, D. Vegetation response to rainfall variation and human impact in central Kenya during the past 1100 years. Holocene 13, 285–292 (2003).

    Article  Google Scholar 

  84. Maley, J. & Brénac, P. Analyses polliniques préliminaires du Quaternaire récent de l’Ouest Cameroun: mise en évidence de refuges forestiers et discussion des problèmes paléoclimatiques. Mémoires Trav. EPHE 17, 129–142 (1987).

    Google Scholar 

  85. Maley, J. Etudes Palynologiques dans le Bassin du Tchad et Paléoclimatologie de l’Afrique Nord-Tropicale de 30000 Ans à l'Époque Actuelle (ORSTOM, Paris, 1981).

  86. Umer, M. et al. Late pleistocene and holocene vegetation history of the bale mountains, Ethiopia. Quat. Sci. Rev. 26, 2229–2246 (2007).

    Article  Google Scholar 

  87. Schulz, E. Aktueller Pollenniederschlag in der zentralen Sahara und Interpretationsmoglichkeiten quartarer Pollenspektren. Palaeoecology of Africa and of the surrounding islands and Antarctica 8–14 (1976).

  88. Ngos, S. III, Giresse, P. & Maley, J. Palaeoenvironments of Lake Assom near Tibati (south Adamawa, Cameroon). What happened in Tibati around 1700 years bp? J. Afr. Earth Sci. 37, 35–45 (2003).

    Article  Google Scholar 

  89. Tamura, T. in Paysages Quaternaires de L’Afrique Centrale Atlantique (eds Lanfranchi, R. & Schwartz, D.) 298–313 (Editions de l'Orstom, Paris, 1990).

  90. Holmes, J. et al. Late Holocene palaeolimnology of Bal Lake, northern Nigeria, a multidisciplinary study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 148, 169–185 (1999).

    Article  Google Scholar 

  91. Assi-Kaudjhis, C. in Forest Ecosystems—More than Just Trees (eds Blanco, J. A. & Lo, Y.-H.) Ch. 6 (2012).

  92. Kiahtipes, C. et al. Prehistory and the present: palaeoenvironments in the northern Congo Basin. Farming 2011, 1–14 (2011).

    Article  Google Scholar 

  93. Maley, J. The African rain forest vegetation and palaeoenvironments during late Quaternary. Clim. Change 19, 79–98 (1991).

    Article  Google Scholar 

  94. Nelson, D. M., Verschuren, D., Urban, M. A. & Hu, F. S. Long-term variability and rainfall control of savanna fire regimes in equatorial East Africa. Glob. Change Biol. 18, 3160–3170 (2012).

    Article  Google Scholar 

  95. Assi-Kaudjhis, C., Digbehi, B. Z., Roche, E. & Lezine, A.-M. Synthèse sur l’évolution des paléoenvironnements de l’Afrique occidentale atlantique depuis la fin de la dernière période glaciaire. Influences climatiques et anthropiques. Geo-Eco-Trop 34, 1–28 (2010).

  96. Lavachery, P. The Holocene archaeological sequence of Shum Laka rock shelter (Grassfields, western Cameroon). Afr. Archaeol. Rev. 18, 213–247 (2001).

    Article  Google Scholar 

  97. Moeyersons, J. Geomorphological processes and their palaeoenvironmental significance at the Shum Laka cave (Bamenda, western Cameroon). Palaeogeogr. Palaeoclimatol. Palaeoecol. 133, 103–116 (1997).

    Article  Google Scholar 

  98. Richards, K. Preliminary results of pollen analysis of a 6000 year core from Mboandong, a crater lake in Cameroon. Hull. Univ. Geogr. Dep. Misc. Ser. 32, 14–28 (1986).

    Google Scholar 

  99. Ngomanda, A., Neumann, K., Schweizer, A. & Maley, J. Seasonality change and the third millennium bp rainforest crisis in southern Cameroon (Central Africa). Quat. Res. 71, 307–318 (2009).

    Article  Google Scholar 

  100. Elenga, H., Schwartz, D. & Vincens, A. Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 345–356 (1994).

    Article  Google Scholar 

  101. Burrough, S. L. & Willis, K. J. Ecosystem resilience to late-Holocene climate change in the Upper Zambezi Valley. Holocene 25, 1811–1828 (2015).

    Article  Google Scholar 

  102. Ekblom, A. & Gillson, L. Hierarchy and scale: testing the long term role of water, grazing and nitrogen in the savanna landscape of Limpopo National Park (Mozambique). Landsc. Ecol. 25, 1529–1546 (2010).

    Article  Google Scholar 

  103. Livingstone, D. A. 22,000-year pollen record from the plateau of Zambia. Limnol. Oceanogr. 16, 349–356 (1971).

    Article  Google Scholar 

  104. Waller, M. P., Street‐Perrott, F. A. & Wang, H. Holocene vegetation history of the Sahel: pollen, sedimentological and geochemical data from Jikariya Lake, north‐eastern Nigeria. J. Biogeogr. 34, 1575–1590 (2007).

    Article  Google Scholar 

  105. Ekblom, A. Forest–savanna dynamics in the coastal lowland of southern Mozambique since c. ad 1400. Holocene 18, 1247–1257 (2008).

    Article  Google Scholar 

  106. Runge, J. in Southern Hemisphere Paleo- and Neoclimates 249–262 (Springer, Berlin, 2000).

  107. Vincens, A., Buchet, G., Servant, M. & ECOFIT Mbalang collaborators Vegetation response to the “African Humid Period” termination in Central Cameroon (7 N)—new pollen insight from Lake Mbalang. Clim. Past 6, 281–294 (2010).

    Article  Google Scholar 

  108. Brncic, T., Willis, K., Harris, D. & Washington, R. Culture or climate? The relative influences of past processes on the composition of the lowland Congo rainforest. Philos. Trans. R. Soc. B Biol. Sci. 362, 229–242 (2007).

    Article  Google Scholar 

  109. Brncic, T., Willis, K., Harris, D., Telfer, M. & Bailey, R. Fire and climate change impacts on lowland forest composition in northern Congo during the last 2580 years from palaeoecological analyses of a seasonally flooded swamp. Holocene 19, 79–89 (2009).

    Article  Google Scholar 

  110. Ngomanda, A. et al. Vegetation changes during the past 1300 years in western equatorial Africa: a high resolution pollen record from Lake Kamalee, Lope Reserve, Central Gabon. Holocene 15, 1021–1031 (2005).

    Article  Google Scholar 

  111. Vincens, A., Lézine, A., Buchet, G., Lewden, D. & Le Thomas, A. African pollen database inventory of tree and shrub pollen types. Rev. Palaeobot. Palynol. 145, 135–141 (2007).

    Article  Google Scholar 

  112. Piperno, D. Phytoliths: a Comprehensive Guide for Archaeologists and Paleoecologists (Altamira, Oxford, 2006).

  113. Bremond, L., Alexandre, A., Hely, C. & Guiot, J. A phytolith index as a proxy of tree cover density in tropical areas: calibration with leaf area index along a forest–savanna transect in southeastern Cameroon. Glob. Planet. Change 45, 277–293 (2005).

    Article  Google Scholar 

  114. Aleman, J. C., Canal-Subitani, S., Favier, C. & Bremond, L. Influence of the local environment on lacustrine sedimentary phytolith records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 273–283 (2014).

    Article  Google Scholar 

  115. Runge, F. & Fimbel, R. Opal phytoliths as evidence for the formation of savannah islands in the rain forest of Southeast Cameroon. Palaeoecology of Africa and the Surrounding Islands 27, 171–185 (2001).

  116. Runge, F. The opal phytolith inventory of soils in central Africa—quantities, shapes, classification, and spectra. Rev. Palaeobot. Palynol. 107, 23–53 (1999).

    Article  Google Scholar 

  117. Bremond, L., Bodin, S., Bentaleb, I., Favier, C. & Canal, S. Past tree cover of the Congo Basin recovered by phytoliths and δ13C along soil profiles. Quat. Int. 434, 91–101 (2017).

    Article  Google Scholar 

  118. Bremond, L. et al. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Glob. Planet. Change 61, 209–224 (2008).

    Article  Google Scholar 

  119. Gillson, L. Testing non-equilibrium theories in savannas: 1400 years of vegetation change in Tsavo National Park, Kenya. Ecol. Complex. 1, 281–298 (2004).

    Article  Google Scholar 

  120. Schwartz, D. Intérêt de la mesure du 13C des sols en milieu naturel equatorial pour la connaissance des aspects pédologiques et écologiques des relations savane-forêt: exemples du Congo. Cah. Orstom sér. Pédol. 26, 327–341 (1991).

    CAS  Google Scholar 

  121. Runge, J., Sangen, M., Neumer, M., Eisenberg, J. & Becker, E. Late Quaternary valley and slope deposits and their palaeoenvironmental significance in the Upper Congo Basin, Central Africa. New Stud. Former Recent Landsc. Chang. Afr. Palaeoecol. Afr. 32, 53 (2013).

    Google Scholar 

  122. Oslisly, R. Hommes et milieux à l’Holocène dans la moyenne vallée de l’Ogooué (Gabon). Bull. Soc. Préhis. Fr. 95, 93–105 (1998).

    Article  Google Scholar 

  123. Guillet, B. et al. Agreement between floristic and soil organic carbon isotope (13C/12C, 14C) indicators of forest invasion of savannas during the last century in Cameroon. J. Trop. Ecol. 17, 809–832 (2001).

    Article  Google Scholar 

  124. Desjardins, T. et al. δ13C variation of soil organic matter as an indicator of vegetation change during the Holocene in central Cameroon. C. R. Geosci. 345, 266–271 (2013).

    Article  CAS  Google Scholar 

  125. Vleminckx, J. et al. Soil charcoal to assess the impacts of past human disturbances on tropical forests. PLoS ONE 9, e108121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tovar, C. et al. Influence of 1100 years of burning on the central African rainforest. Ecography 37, 1139–1148 (2014).

    Google Scholar 

  127. Biwolé, A. B. et al. New data on the recent history of the littoral forests of southern Cameroon: an insight into the role of historical human disturbances on the current forest composition. Plant Ecol. Evol. 148, 19–28 (2015).

    Article  Google Scholar 

  128. Morin-Rivat, J. et al. High spatial resolution of late-Holocene human activities in the moist forests of central Africa using soil charcoal and charred botanical remains. Holocene 26, 1954–1967 2016).

    Article  Google Scholar 

  129. Gillet, J.-F. Les Forêts à Marantaceae au Sein de la Mosaïque Forestière du Nord de la République du Congo: Origines et Modalités de Gestion. PhD thesis, Univ. Liège (2013).

  130. Hubau, W. et al. Ancient charcoal as a natural archive for paleofire regime and vegetation change in the Mayumbe, Democratic Republic of the Congo. Quat. Res. 80, 326–340 (2013).

    Article  Google Scholar 

  131. Hubau, W. et al. Archaeological charcoals as archives for firewood preferences and vegetation composition during the late Holocene in the southern Mayumbe, Democratic Republic of the Congo (DRC). Veg. Hist. Archaeobot. 23, 591–606 (2014).

    Google Scholar 

  132. Hubau, W., Van den Bulcke, J., Van Acker, J. & Beeckman, H. Charcoal‐inferred Holocene fire and vegetation history linked to drought periods in the Democratic Republic of Congo. Glob. Change Biol. 21, 2296–2308 (2015).

    Article  Google Scholar 

  133. Alexandre, A., Meunier, J. D., Lézine, A. M., Vincens, A. & Schwartz, D. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136, 213–229 (1997).

    Article  Google Scholar 

  134. Bremond, L., Alexandre, A., Peyron, O. & Guiot, J. Grass water stress estimated from phytoliths in West Africa. J. Biogeogr. 32, 311–327 (2005).

    Article  Google Scholar 

  135. Barboni, D., Bonnefille, R., Alexandre, A. & Meunier, J. Phytoliths as paleoenvironmental indicators, west side Middle Awash Valley, Ethiopia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, 87–100 (1999).

    Article  Google Scholar 

  136. Barboni, D., Bremond, L. & Bonnefille, R. Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 246, 454–470 (2007).

    Article  Google Scholar 

  137. Esteban, I. et al. Modern soil phytolith assemblages used as proxies for Paleoscape reconstruction on the south coast of South Africa. Quat. Int. 434, 160–179 (2016).

    Article  Google Scholar 

  138. Novello, A. et al. Phytolith signal of aquatic plants and soils in Chad, Central Africa. Rev. Palaeobot. Palynol. 178, 43–58 (2012).

    Article  Google Scholar 

  139. Novello, A. et al. Phytoliths indicate significant arboreal cover at Sahelanthropus type locality TM266 in northern Chad and a decrease in later sites. J. Hum. Evol. 106, 66–83 (2017).

    Article  PubMed  Google Scholar 

  140. Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2015).

  142. Stanley, H. M. Geographical results of the Emin Pasha relief expedition. Proc. R. Geog. Soc. Mon. Rec. Geog. 12, 313–331 (1890).

    Google Scholar 

  143. Engler, A. Die Pflanzenwelt Afrikas; insbesondere seiner tropischen Gebiete. Vegetation der Erde. Band Allgemeiner Uberblick Uber Pflanzenwelt Afrikas und Ihre Existenzbedingungen 9, 1–460 (1908–1910).

  144. Chevalier, A. Rapport Sur une Mission Scientifique dans l’Ouest Africain (1908–1910) (Imprimerie Nationale, Paris, 1912).

  145. Meunier, A. Afrique Equatoriale Française (Ministère des Colonies, Paris, 1926).

  146. Lu, G. Y. & Wong, D. W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34, 1044–1055 (2008).

    Article  Google Scholar 

  147. Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high‐resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  148. McPherson, J., Jetz, W. & Rogers, D. J. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823 (2004).

    Article  Google Scholar 

  149. Gornitz, V. A survey of anthropogenic vegetation changes in West Africa during the last century—climatic implications. Clim. Change 7, 285–325 (1985).

    Article  Google Scholar 

  150. Parry, J. Tree choppers become tree planters. Appropr. Technol. 30, 38–39 (2003).

    Google Scholar 

  151. Kigomo, B. Forests and Woodlands Degradation in Dryland Africa: A Case for Urgent Global Attention.  Report on the XII World Forestry Congress (Food and Agriculture Organization of the United States, 2003).

Download references

Acknowledgements

Financial support for this study was provided by a National Science Foundation grant (DMS-1615531) to A.C.S., by the Sessel Fund and by another anonymous donor to Yale University for A.C.S. and J.C.A., and by the Yale Climate and Energy Institute to M.A.J. The authors thank C. Favier and J. Kaplan for early discussions and G. Aleman for help with the map extraction and processing.

Author information

Authors and Affiliations

Authors

Contributions

J.C.A. and A.C.S. designed the study and analyses. J.C.A. assembled and calibrated the palaeo-data. M.A.J. developed and ran the models. J.C.A. and A.C.S. co-wrote the paper, with feedback and methods contributions from M.A.J.

Corresponding author

Correspondence to Julie C. Aleman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Results, Supplementary Figures 1–7, Supplementary References.

Life Sciences Reporting Summary

Supplementary Data 1

All palaeo-proxy records used for past forest extent reconstructions. This Excel file contains the palaeo-proxy records that were used in this study, with information on the site name, location, type of proxy, value of proxy, reconstructed biome and the publication.

Supplementary Data 2

Modern phytolith records used in biome calibration. This Excel file contains the modern phytolith records that were used for the calibration procedure, with information on the sample name, location, D/P value, the ecosystem type and the publication.

Supplementary Data 3

Modern δ13C of soil organic matter records used in biome calibration. This Excel file contains the modern δ13C of soil organic matter records that were used for the calibration procedure, with information on the sample name, location, δ13C value, the ecosystem type and the publication.

Supplementary Data 4

Rates of forest change per country for a tree cover threshold of 65%, based on a probability threshold of 0.5. This Excel file contains the data about the median forest area in 1900 and 2000 per country modelled for a tree cover threshold of 65% and based on a probability threshold of 0.5, and the 2.5 and 97.5 quantile confidence intervals of the estimates of relative and absolute forest changes resulting from the bootstrapping procedure.

Supplementary Data 5

Rates of forest change per country for a tree cover threshold of 70%, based on a probability threshold of 0.5. This Excel file contains the data about the median forest area in 1900 and 2000 per country modelled for a tree cover threshold of 70% and based on a probability threshold of 0.5, and the 2.5 and 97.5 quantile confidence intervals of the estimates of relative and absolute forest changes resulting from the bootstrapping procedure.

Supplementary Data 6

Rates of forest change per country for a tree cover threshold of 75%, based on a probability threshold of 0.5. This Excel file contains the data about the median forest area in 1900 and 2000 per country modelled for a tree cover threshold of 75% and based on a probability threshold of 0.5, and the 2.5 and 97.5 quantile confidence intervals of the estimates of relative and absolute forest changes resulting from the bootstrapping procedure.

Supplementary Data 7

This R file contains the code for running the models that compute the probabilities of forest presence in 1900 and 2000, for assigning the presence of forest or savannah to each grid cell based on a probability threshold of 0.5, and for quantifying forest change for each country.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleman, J.C., Jarzyna, M.A. & Staver, A.C. Forest extent and deforestation in tropical Africa since 1900. Nat Ecol Evol 2, 26–33 (2018). https://doi.org/10.1038/s41559-017-0406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0406-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing