Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic insights into the ancient spread of Lyme disease across North America

Abstract

Lyme disease is the most prevalent vector-borne disease in North America and continues to spread. The disease was first clinically described in the 1970s in Lyme, Connecticut, but the origins and history of spread of the Lyme disease bacteria, Borrelia burgdorferi sensu stricto (s.s.), are unknown. To explore the evolutionary history of B. burgdorferi in North America, we collected ticks from across the USA and southern Canada from 1984 to 2013 and sequenced the, to our knowledge, largest collection of 146 B. burgdorferi s.s. genomes. Here, we show that B. burgdorferi s.s. has a complex evolutionary history with previously undocumented levels of migration. Diversity is ancient and geographically widespread, well pre-dating the Lyme disease epidemic of the past ~40 years, as well as the Last Glacial Maximum ~20,000 years ago. This means the recent emergence of human Lyme disease probably reflects ecological change—climate change and land use changes over the past century—rather than evolutionary change of the bacterium.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of B. burgdorferi samples collected in North America.
Fig. 2: Reconstruction of B. burgdorferi dispersal across North America.
Fig. 3: Dated phylogeny of B. burgdorferi in North America.

Similar content being viewed by others

References

  1. Steere, A., Coburn, J. & Glickstein, L. The emergence of Lyme disease. J. Clin. Invest. 113, 1093–1101 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Steere, A. C. C., Malawista, S. E., Snydman, D. R. & Andiman, W. A. A cluster of arthritis in children and adults in Lyme, Connecticut. Arthritis Rheum. 20, 7–17 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Steere, A. C. & Malawista, S. E. Cases of Lyme disease in the United States: locations correlated with distribution of Ixodes dammini. Ann. Intern. Med. 91, 730–733 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Walter, K. S. et al. Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes. Proc. R. Soc. B 283, S301–S327 (2016).

    Article  Google Scholar 

  5. How Many People Get Lyme Disease? https://www.cdc.gov/lyme/stats/humancases.html (Centers for Disease Control and Prevention, 2015).

  6. Spielman, A. & Wilson, M. Ecology of Ixodes Dammini-borne human babesiosis and Lyme disease. Annu. Rev. Entomol. 30, 439–460 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455, 661–664 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gray, R. R. et al. Testing spatiotemporal hypothesis of bacterial evolution using methicillin-resistant Staphylococcus aureus ST239 genome-wide data within a bayesian framework. Mol. Biol. Evol. 28, 1593–1603 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Biek, R. et al. Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog. 8, e1003008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carpi, G. et al. Whole genome capture of vector-borne pathogens from mixed DNA samples: a case study of Borrelia burgdorferi. BMC Genomics 16, 434 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu, G. et al. Detection of heterogeneity of Borrelia burgdorferi in Ixodes ticks by culture-dependent and culture-independent methods. J. Clin. Microbiol. 51, 615–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Humphrey, P. T., Caporale, D. A. & Brisson, D. Uncoordinated phylogeography of Borrelia burgdorferi and its tick vector, Ixodes scapularis. Evolution 64, 2653–2663 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qiu, W.-G., Dykhuizen, D. E., Acosta, M. S. & Luft, B. J. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics 160, 833–849 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoen, A. G. A. et al. Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc. Natl Acad. Sci. USA 106, 15013–15018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Margos, G. et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 105, 8730–8735 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mechai, S., Margos, G., Feil, E. J., Lindsay, L. R. & Ogden, N. H. Complex population structure of Borrelia burgdorferi in southeastern and south central Canada as revealed by phylogeographic analysis. Appl. Environ. Microbiol. 81, 1309–1318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haven, J. et al. Pervasive recombination and sympatric genome diversification driven by frequency-dependent selection in Borrelia burgdorferi, the Lyme disease bacterium. Genetics 189, 951–966 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mongodin, E. E. F. et al. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics 14, 693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marshall, W. F. et al. Detection of Borrelia burgdorferi DNA in museum specimens of Peromyscus leucopus. J. Infect. Dis. 170, 1027–1032 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Persing, D. H. et al. Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks. Science 249, 1420–1423 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Casjens, S. R. et al. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J. Bacteriol. 193, 1489–1490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Casjens, S. R. et al. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics 18, 165 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fraser, C. M. et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Qiu, W.-G. et al. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc. Natl Acad. Sci. USA 101, 14150–14155 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwan, T. G., Piesman, J., Golde, W. T., Dolan, M. C. & Rosa, P. A. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc. Natl Acad. Sci. USA 92, 2909–2913 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barbour, A. A. G. & Travinsky, B. Evolution and distribution of the ospC gene, a transferable serotype determinant of Borrelia burgdorferi. mBio 1, e00153–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wormser, G. P. et al. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J. Infect. Dis. 198, 1358–1364 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jewett, M. W. et al. GuaA and GuaB are essential for Borrelia burgdorferi survival in the tick-mouse infection cycle. J. Bacteriol. 191, 6231–6241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi, Y., Xu, Q., McShan, K. & Fang, T. L. Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect. Immun. 76, 1239–1246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, H. et al. Characterization of the highly regulated antigen BBA05 in the enzootic cycle of Borrelia burgdorferi. Infect. Immun. 78, 100–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Brown, R. N. & Lane, R. S. Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science 256, 1439–1442 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Gulia-Nuss, M. et al. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7, 10507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis, in North America. Evolution 69, 1678–1689 (2015).

    Article  PubMed  Google Scholar 

  35. Carpi, G. et al. Babesia microti from humans and ticks hold a genomic signature of strong population structure in the United States. BMC Genomics 17, 888 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Diuk-Wasser, M. A. et al. Field and climate-based model for predicting the density of host-seeking nymphal Ixodes scapularis, an important vector of tick-borne disease agents in the eastern United States. Glob. Ecol. Biogeogr. 19, 504–514 (2010).

    Google Scholar 

  37. Kugeler, K. J., Farley, G. M., Forrester, J. D. & Mead, P. S. Geographic distribution and expansion of human Lyme disease, United States. Emerg. Infect. Dis. 21, 1455–1457 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Qiu, W.-G. et al. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 14, 1097–1104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Biek, R., Pybus, O. G., Lloyd-Smith, J. O. & Didelot, X. Measurably evolving pathogens in the genomic era. Trends Ecol. Evol. 30, 306–313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Drummond, A., Pybus, O. G. & Rambaut, A. Inference of viral evolutionary rates from molecular sequences. Adv. Parasitol. 54, 331–358 (2003).

    Article  PubMed  Google Scholar 

  41. Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Funk, D. J., Wernegreen, J. J. & Moran, N. A. Intraspecific variation in symbiont genomes: bottlenecks and the aphid–Buchnera association. Genetics 157, 477–489 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Walter, K. S. et al. Vectors as epidemiological sentinels: patterns of within-tick Borrelia burgdorferi diversity. PLOS Pathog. 12, e1005759 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cronon, W. Changes in the Land: Indians, Colonists, and the Ecology of New England (Hill and Wang, New York, 1983).

  48. Matuschka, F. & Spielman, A. The emergence of Lyme disease in a changing environment in North America and central Europe. Exp. Appl. Acarol. 2, 337–353 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Eisen, R. J., Eisen, L. & Beard, C. B. County-scale distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the continental United States. J. Med. Entomol. 53, 349–386 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ogden, N. H. et al. A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int. J. Parasitol. 35, 375–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Schutzer, S. E. et al. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J. Bacteriol. 193, 1018–1020 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Casjens, S. et al. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35, 490–516 (2002).

    Article  Google Scholar 

  53. Casjens, S. R. et al. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS ONE 7, e33280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feil, E. et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl Acad. Sci. USA 98, 182–187 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    Article  PubMed  Google Scholar 

  59. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

    Article  Google Scholar 

  62. Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).

  63. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  64. Inouye, M., Dashnow, H., Raven, L. & Schultz, M. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 6, 90 (2014).

  65. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  Google Scholar 

  66. Legendre, P., Desdevises, Y. & Bazin, E. A statistical test for host–parasite coevolution. Syst. Biol. 51, 217–234 (2002).

    Article  PubMed  Google Scholar 

  67. Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baele, G. et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 29, 2157–2167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).

    CAS  PubMed  Google Scholar 

  71. Slatkin, M. & Hudson, R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health (NIH) Ecology and Evolution of Infectious Disease Program grant R01 GM105246 and by NIH grant R21AI112938. K.S.W. was supported by the NIH Ruth L. Kirschstein National Research Service Award (F31 AI118233-01A1) and the NSF Doctoral Dissertation Improvement Grant (DEB-1401143). G.C. was supported by the Gaylord Donnelley Postdoctoral Environmental Fellowship (the Yale Institute for Biospheric Studies). We thank N. Ogden, J. Brinkerhoff, S. Paskewitz, D. Fish and S. Bent for providing tick samples; P. Flynn and J. Underwood for laboratory work; C. Ben Mamoun and P. Krause for discussions; and R. Bjornson and the Yale High Performance Computing Center for computational support.

Author information

Authors and Affiliations

Authors

Contributions

K.S.W., M.A.D.-W., A.C. and G.C. conceived of and designed the experiments. K.S.W. performed the experiments and analysed the data. M.A.D.-W., A.C., G.C. and K.S.W. contributed reagents/materials/analysis tools. K.S.W., M.A.D.-W. and A.C. wrote the manuscript.

Corresponding author

Correspondence to Katharine S. Walter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures; Supplementary Tables, and Supplementary References

Supplementary Dataset

Sample descriptions. For each bacterial sample, the biological source, sampling location, and B. burgdorferi mapping statisticsSample descriptions. For each bacterial sample, the biological source, sampling location, and B. burgdorferi mapping statistics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, K.S., Carpi, G., Caccone, A. et al. Genomic insights into the ancient spread of Lyme disease across North America. Nat Ecol Evol 1, 1569–1576 (2017). https://doi.org/10.1038/s41559-017-0282-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0282-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing