Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prenatal development supports a single origin of laryngeal echolocation in bats

Abstract

Bat laryngeal echolocation is considered as one of the most complex and diverse modes of auditory sensory perception in animals and its evolutionary history has been the cause of many scientific controversies in the past two decades. To date, the majority of scientific evidence supports that bats (Chiroptera) are divided into two subordinal groups: Yinpterochiroptera, containing the laryngeal echolocating superfamily Rhinolophidae as sister taxa to the non-laryngeal echolocating family Pteropodidae; and Yangochiroptera, containing all other laryngeal echolocating lineages. This topology has led to an unanswered question in mammalian biology: was laryngeal echolocation lost in the ancestral pteropodids or gained convergently in the echolocating bat lineages? To date, there is insufficient and conflicting evidence from fossil, genomic, morphological and phylogenomic data to resolve this question. We detail an ontogenetic study of fetal cochlear development from seven species of bats and five outgroup mammals and show that in early fetal development, all bats including the non-laryngeal echolocating pteropodids have a similarly large cochlea typically associated with laryngeal echolocation abilities. The subsequent cochlear growth rate in the pteropodids is the slowest of all mammals and leads to the pteropodids and the non-echolocating lineages eventually sharing a similar cochlear morphospace as adults. The results suggest that pteropodids maintain a vestigial developmental stage indicative of past echolocation capabilities and thus support a single origin of laryngeal echolocation in bats.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic tree and cochlear development of the 12 species analysed.
Figure 2: X-ray microradiographs of the cochlea at different developmental stages in eight of the species analysed.

Similar content being viewed by others

References

  1. Wanninger, A. Morphology is dead — long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. Front. Ecol. Evol. 3, 54 (2015).

  2. Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J. & de Jong, W. W. Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl Acad. Sci. USA 98, 6241–6246 (2001).

    Article  CAS  Google Scholar 

  3. Jones, G. Echolocation. Curr. Biol. 15, R484–R488 (2005).

    Article  CAS  Google Scholar 

  4. Jones, G., Teeling, E. C. & Rossiter, S. J. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats. Front. Physiol. 4, 117 (2013).

    Article  Google Scholar 

  5. Teeling, E. C., Jones, G. M. & Rossiter, S. J. in Bat Bioacoustics (eds Fenton, B. et al. ) 25–54 (Springer, 2016).

  6. Simmons, N. B. in Mammal Species of the World: a Taxonomic and Geographic Reference Vol. 1 (eds Wilson, D. E. & Reeder, D. M. ) 312–529 (Johns Hopkins Univ. Press, 2005).

    Google Scholar 

  7. Fenton, M. B. in Bat Evolution, Ecology, and Conservation (eds Adams, R. A. & Pedersen, S. C. ) 47–70 (Springer, 2013).

    Book  Google Scholar 

  8. Teeling, E. C. Hear, hear: the convergent evolution of echolocation in bats? Trends Ecol. Evol. 24, 351–354 (2009).

    Article  Google Scholar 

  9. Springer, M. S. Phylogenetics: bats united, microbats divided. Curr. Biol. 23, R999–R1001 (2013).

    Article  CAS  Google Scholar 

  10. Hutcheon, J. M., Kirsch, J. A. & Pettigrew, J. D. Base-compositional biases and the bat problem. III. The questions of microchiropteran monophyly. Phil. Trans. R. Soc. Lond. B 353, 607–617 (1998).

    Article  CAS  Google Scholar 

  11. Van Den Bussche, R. A. & Hoofer, S. R. Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. J. Mamm. 85, 321–330 (2004).

    Article  Google Scholar 

  12. Teeling, E. C. et al. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580–584 (2005).

    Article  CAS  Google Scholar 

  13. Teeling, E. C. et al. Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403, 188–192 (2000).

    Article  CAS  Google Scholar 

  14. Meredith, R. W. et al. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    Article  CAS  Google Scholar 

  15. Tsagkogeorga, G., Parker, J., Stupka, E., Cotton, J. A. & Rossiter, S. J. Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr. Biol. 23, 2262–2267 (2013).

    Article  CAS  Google Scholar 

  16. Li, G., Wang, J., Rossiter, S. J., Jones, G. & Zhang, S. Accelerated FoxP2 evolution in echolocating bats. PLoS ONE 2, e900 (2007).

    Article  Google Scholar 

  17. Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013).

    Article  CAS  Google Scholar 

  18. Teeling, E. C., Dool, S. & Springer, M. S. in Evolutionary History of Bats: Fossils, Molecules and Morphology (eds Gunnell, G. F. & Simmons, N. B. ) 1–22 (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  19. Simmons, N. B., Seymour, K. L., Habersetzer, J. & Gunnell, G. F. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451, 818–821 (2008).

    Article  CAS  Google Scholar 

  20. Veselka, N. et al. A bony connection signals laryngeal echolocation in bats. Nature 463, 939–942 (2010).

    Article  CAS  Google Scholar 

  21. Eiting, T. P. & Gunnell, G. F. Global completeness of the bat fossil record. J. Mamm. Evol. 16, 151–173 (2009).

    Article  Google Scholar 

  22. Gunnell, G. F. & Simmons, N. B. Fossil evidence and the origin of bats. J. Mamm. Evol. 12, 209–246 (2005).

    Article  Google Scholar 

  23. Simmons, N. B., Seymour, K. L., Habersetzer, J. & Gunnell, G. F. Inferring echolocation in ancient bats. Nature 466, E8–E9 (2010).

    Article  CAS  Google Scholar 

  24. Habersetzer, J. & Storch, G. Cochlea size in extant Chiroptera and Middle Eocene microchiropterans from Messel. Naturwissenchaften 79, 462–466 (1992).

    Article  Google Scholar 

  25. Thewissen, J. G. et al. Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplan. Proc. Natl Acad. Sci. USA 103, 8414–8418 (2006).

    Article  CAS  Google Scholar 

  26. Richardson, M. K. & Keuck, G. Haeckel’s ABC of evolution and development. Biol. Rev. 77, 495–528 (2002).

    Article  Google Scholar 

  27. Wang, Z., Han, N., Racey, P. A., Ru, B. H. & He, G. M. A comparative study of prenatal development in Miniopterus schreibersii fuliginosus, Hipposideros armiger and H. pratti . BMC Dev. Biol. 10, 10 (2010).

    Article  Google Scholar 

  28. Cretekos, C. J. et al. Embryonic staging system for the short-tailed fruit bat, Carollia perspicillata, a model organism for the mammalian order Chiroptera, based upon timed pregnancies in captive-bred animals. Dev. Dynam. 233, 721–738 (2005).

    Article  Google Scholar 

  29. Smaers, J. B. & Rohlf, F. J. Testing species’ deviation from allometric predictions using the phylogenetic regression. Evolution 70, 1145–1149 (2016).

    Article  CAS  Google Scholar 

  30. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (numbers 31672274 and 31570382) and the Ministry of Science and Technology of the People’s Republic of China (The National Key Research and Development Program, numbers 2016YFD0500300 and 2016YFC1200100).

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and S.Z. designed the study. T.Z., N.F. and J.P. performed the experiments. Z.W., T.Z., N.F., J.Z. and L.Z. collected the specimens. Z.W., H.X., E.C.T. and S.Z. analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Zhe Wang, Emma C. Teeling or Shuyi Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Table 1 (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhu, T., Xue, H. et al. Prenatal development supports a single origin of laryngeal echolocation in bats. Nat Ecol Evol 1, 0021 (2017). https://doi.org/10.1038/s41559-016-0021

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-016-0021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing