Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ice-free Arctic projections under the Paris Agreement

Abstract

Under the Paris Agreement, emissions scenarios are pursued that would stabilize the global mean temperature at 1.5–2.0 °C above pre-industrial levels, but current emission reduction policies are expected to limit warming by 2100 to approximately 3.0 °C. Whether such emissions scenarios would prevent a summer sea-ice-free Arctic is unknown. Here we employ stabilized warming simulations with an Earth System Model to obtain sea-ice projections under stabilized global warming, and correct biases in mean sea-ice coverage by constraining with observations. Although there is some sensitivity to details in the constraining method, the observationally constrained projections suggest that the benefits of going from 2.0 °C to 1.5 °C stabilized warming are substantial; an eightfold decrease in the frequency of ice-free conditions is expected, from once in every five to once in every forty years. Under 3.0 °C global mean warming, however, permanent summer ice-free conditions are likely, which emphasizes the need for nations to increase their commitments to the Paris Agreement.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ice-free Arctic probabilities based on unconstrained transient warming simulations.
Fig. 2: Ice-free Arctic projections from unconstrained stabilized warming simulations.
Fig. 3: Method to constrain projections with observations.
Fig. 4: Ice-free Arctic probabilities in constrained stabilized warming simulations.
Fig. 5: Sensitivity of ice-free probabilities to the constraining metric.

References

  1. Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    Article  CAS  Google Scholar 

  2. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T.F. et al.) (Cambridge Univ. Press, 2013).

  3. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  4. Rogelj, J. et al. Paris Agreement climate proposals need boost to keep warming well below 2 °C. Nat. Clim. Change 534, 631–639 (2016).

    CAS  Google Scholar 

  5. Mitchell, D. et al. Realizing the impacts of a 1.5 °C warmer world. Nat. Clim. Change 6, 735–737 (2016).

    Article  Google Scholar 

  6. James, R., Washington, R., Schleussner, C. F., Rogelj, J. & Conway, D. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. WIRES Clim. Change 8, e457 (2017).

    Article  Google Scholar 

  7. Screen, J. A. & Williamson, D. Ice-free Arctic at 1.5 °C? Nat. Clim. Change 7, 230–231 (2017).

    Article  Google Scholar 

  8. Sanderson, B. M. Community Climate Simulations to assess avoided impacts in 1.5 °C and 2 °C futures. Earth Syst. Dynam. 8, 827–847 (2017).

    Article  Google Scholar 

  9. Wang, M. & Overland, J. E. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett. 36, L07502 (2009).

    Google Scholar 

  10. Laliberté, F., Howell, S. E. L. & Kushner, P. J. Regional variability of a projected sea ice-free Arctic during the summer months. Geophys. Res. Lett. 43, 256–263 (2016).

    Article  Google Scholar 

  11. Sigmond, M. & Fyfe, J. C. Tropical Pacific impacts on cooling North American winters. Nat. Clim. Change 6, 970–975.

  12. Gillett, N. P., Arora, V. K., Zickfeld, K., Marshall, S. J. & Merryfield, W. J. Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat. Geosci. 4, 83–87 (2011).

    Article  CAS  Google Scholar 

  13. Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E. & Jahn, A. Influence of internal variability on Arctic sea-ice trends. Nat. Clim. Change 5, 86–89 (2015).

    Article  Google Scholar 

  14. Massonnet, F. et al. Constraining projections of summer Arctic sea ice. Cryosphere 6, 1383–1394 (2012).

    Article  Google Scholar 

  15. Fetterer, F., Knowles, K., Meier, W. & Savoie, M. Sea Ice Index (National Snow and Ice Data Center, Boulder, CO).

  16. Rogelj, J., Schleussner, C. F. & Hare, W. Getting it right matters: temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44, 10662–10665 (2017).

    Article  Google Scholar 

  17. Mahlstein, I. & Knutti, R. September Arctic sea ice predicted to disappear near 2 °C global warming above present. J. Geophys. Res. Atmos. 117, D06104 (2012).

    Article  Google Scholar 

  18. Rosenblum, E. & Eisenman, I. Sea ice trends in climate models only accurate in runs with biased global warming. J. Clim. 30, 6265–6278 (2017).

    Article  Google Scholar 

  19. Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).

    Article  CAS  Google Scholar 

  20. Arora, V. K. et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 38, L05805 (2011).

    Article  Google Scholar 

  21. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Canadian Sea Ice and Snow Evolution Network for proposing the CanESM2 Large Ensemble simulations and the modelling groups, the Program for Climate Model Diagnosis and Intercomparison, and the WCRP Working Group on Coupled Modelling for their roles in making available the WCRP CMIP5 multimodel data set. We thank W. Lee and Y. Jiao for technical assistance and B. Merryfield and S. Howell for their helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Contributions

M.S. conceived the project, designed the experiments, performed the analysis and wrote the manuscript. J.C.F. helped with the analysis and helped write the manuscript. N.C.S. helped design the experiments and edited the manuscript.

Corresponding author

Correspondence to Michael Sigmond.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigmond, M., Fyfe, J.C. & Swart, N.C. Ice-free Arctic projections under the Paris Agreement. Nature Clim Change 8, 404–408 (2018). https://doi.org/10.1038/s41558-018-0124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-018-0124-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing