Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solid stress and elastic energy as measures of tumour mechanopathology

Abstract

Solid stress and tissue stiffness affect tumour growth, invasion, metastasis and treatment. Unlike stiffness, which can be precisely mapped in tumours, the measurement of solid stresses is challenging. Here, we show that 2D spatial maps of the solid stress and the resulting elastic energy in excised or in situ tumours with arbitrary shapes and a wide range of sizes can be obtained via three distinct and quantitative techniques that rely on the measurement of tissue displacement after disruption of the confining structures. Application of these methods in models of primary tumours and metastasis revealed that (i) solid stress depends on both cancer cells and their microenvironments, (ii) solid stress increases with tumour size and (iii) mechanical confinement by the surrounding tissue substantially contributes to intratumoral solid stress. Further study of the genesis and consequences of solid stress, facilitated by the engineering principles presented here, may lead to new discoveries and therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2D maps of solid stress in tumours.
Figure 2: Solid stress and elastic energy in primary versus metastatic tumours.
Figure 3: Creating tumour slices provides a sensitive measure of the solid stress that is applicable to a wide range of specimen sizes.
Figure 4: Evolution of solid stress and stiffness as a function of tumour size.
Figure 5: In situ measurements of solid stress.

Similar content being viewed by others

References

  1. Jain, R. K., Martin, J. D. & Stylianopoulos, T . The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).

    Article  CAS  Google Scholar 

  2. Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    Article  CAS  Google Scholar 

  3. Mouw, J. K. et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014).

    Article  CAS  Google Scholar 

  4. Samuel, M. S. et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19, 776–791 (2011).

    Article  CAS  Google Scholar 

  5. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

    Article  CAS  Google Scholar 

  6. Goetz, J. G. et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146, 148–163 (2011).

    Article  CAS  Google Scholar 

  7. Tung, J. C. et al. Tumor mechanics and metabolic dysfunction. Free Radic. Biol. Med. 79, 269–280 (2015).

    Article  CAS  Google Scholar 

  8. Helmlinger, G., Netti, P. A., Lichtenbeld, H. C., Melder, R. J. & Jain, R. K. Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15, 778–783 (1997).

    Article  CAS  Google Scholar 

  9. Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).

    Article  CAS  Google Scholar 

  10. Boucher, Y. & Jain, R. K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52, 5110–5114 (1992).

    CAS  PubMed  Google Scholar 

  11. Griffon-Etienne, G., Boucher, Y., Brekken, C., Suit, H. D. & Jain, R. K. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59, 3776–3782 (1999).

    CAS  PubMed  Google Scholar 

  12. Padera, T. P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296, 1883–1886 (2002).

    Article  CAS  Google Scholar 

  13. Padera, T. P. et al. Pathology: cancer cells compress intratumour vessels. Nature 427, 695 (2004).

    Article  CAS  Google Scholar 

  14. Chauhan, V. P. et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 4, 2516 (2013).

    Article  Google Scholar 

  15. Jain, R. K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622 (2014).

    Article  CAS  Google Scholar 

  16. Fernández-Sánchez, M. E. et al. Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature 523, 92–95 (2015).

    Article  Google Scholar 

  17. Tse, J. M. et al. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl Acad. Sci. USA 109, 911–916 (2012).

    Article  CAS  Google Scholar 

  18. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    Article  CAS  Google Scholar 

  19. Chauhan, V. P. et al. Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell 26, 14–15 (2014).

    Article  CAS  Google Scholar 

  20. US National Library of Medicine. Proton w/FOLFIRINOX-Losartan for pancreatic cancer. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01821729 (2013).

  21. US National Library of Medicine. PEGPH20 plus nab-paclitaxel plus Gemcitabine compared with nab-paclitaxel plus Gemcitabine in subjects with stage IV untreated pancreatic cancer (HALO-109-202). ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01839487 (2013).

  22. Chuong, C. & Fung, Y. in Frontiers in Biomechanics (eds Schmid-Schönbein, G. W. et al. ) Ch. 9 (Springer, 1986).

    Google Scholar 

  23. Taber, L. A. & Humphrey, J. D . Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123, 528–535 (2001).

    Article  CAS  Google Scholar 

  24. Campas, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    Article  CAS  Google Scholar 

  25. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266 (2010).

    Article  CAS  Google Scholar 

  26. Timoshenko, S. & Goodier, J. N. Theory of Elasticity (McGraw-Hill, 1951).

    Google Scholar 

  27. Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nanotech. 7, 757–765 (2012).

    Article  CAS  Google Scholar 

  28. Lopez, J., Kang, I., You, W., McDonald, D. & Weaver, V. In situ force mapping of mammary gland transformation. Integr. Biol. (Camb). 3, 910–921 (2011).

    Article  CAS  Google Scholar 

  29. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009).

    Article  CAS  Google Scholar 

  30. Simon, D., Horgan, C. & Humphrey, J. Mechanical restrictions on biological responses by adherent cells within collagen gels. J. Mech. Behav. Biomed. Mat. 14, 216–226 (2012).

    Article  CAS  Google Scholar 

  31. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  Google Scholar 

  32. Stylianopoulos, T. et al. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res. 73, 3833–3841 (2013).

    Article  CAS  Google Scholar 

  33. Voutouri, C., Mpekris, F., Papageorgis, P., Odysseos, A. D. & Stylianopoulos, T. Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors. PLoS ONE 9, e104717 (2014).

    Article  Google Scholar 

  34. Fukumura, D., Incio, J., Shankaraiah, R. & Jain, R. K. Obesity and cancer: an angiogenic and inflammatory link. Microcirculation 23, 191–206 (2016).

    Article  Google Scholar 

  35. Incio, J. et al. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov. 6, 852–869 (2016).

    Article  CAS  Google Scholar 

  36. Van den Eynden, G. G. et al. The histological growth pattern of colorectal cancer liver metastases has prognostic value. Clin. Exp. Metastasis 29, 541–549 (2012).

    Article  CAS  Google Scholar 

  37. Eefsen, R. et al. Growth pattern of colorectal liver metastasis as a marker of recurrence risk. Clin. Exp. Metastasis 32, 369–381 (2015).

    Article  CAS  Google Scholar 

  38. Conklin, M. W. et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).

    Article  Google Scholar 

  39. Good, D. W. et al. Elasticity as a biomarker for prostate cancer: a systematic review. BJU. Int. 113, 523–534 (2014).

    Article  Google Scholar 

  40. Choi, W. J. et al. Predicting prognostic factors of breast cancer using shear wave elastography. Ultrasound Med. Biol. 40, 269–274 (2014).

    Article  Google Scholar 

  41. Milosevic, M. F. et al. High tumor interstitial fluid pressure identifies cervical cancer patients with improved survival from radiotherapy plus cisplatin versus radiotherapy alone. Int. J. Cancer 135, 1692–1699 (2014).

    Article  CAS  Google Scholar 

  42. Roh, H. et al. Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res. 51, 6695–6698 (1991).

    CAS  PubMed  Google Scholar 

  43. Fyles, A. et al. Long-term performance of interstial fluid pressure and hypoxia as prognostic factors in cervix cancer. Radiother. Oncol. 80, 132–137 (2006).

    Article  Google Scholar 

  44. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  45. Nia, H. T., Han, L., Li, Y., Ortiz, C. & Grodzinsky, A. Poroelasticity of cartilage at the nanoscale. Biophys. J. 101, 2304–2313 (2011).

    Article  CAS  Google Scholar 

  46. Grodzinsky, A. J. Fields, Forces, and Flows in Biological Systems Ch. 4 (Garland Science, 2011).

    Google Scholar 

  47. Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  48. Kiviranta, P. et al. Collagen network primarily controls Poisson's ratio of bovine articular cartilage in compression. J. Orthop. Res. 24, 690–699 (2006).

    Article  Google Scholar 

  49. Buschmann, M. D. et al. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch. Biochem. Biophys. 366, 1–7 (1999).

    Article  CAS  Google Scholar 

  50. Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J. & Jain, R. K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503 (2000).

    CAS  PubMed  Google Scholar 

  51. Morimoto-Tomita, M., Ohashi, Y., Matsubara, A., Tsuiji, M. & Irimura, T. Mouse colon carcinoma cells established for high incidence of experimental hepatic metastasis exhibit accelerated and anchorage-independent growth. Clin. Exp. Metastasis 22, 513–521 (2005).

    Article  Google Scholar 

  52. Yuan, F. et al. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54, 4564–4568 (1994).

    CAS  PubMed  Google Scholar 

  53. Nia, H. T. et al. Dataset for solid stress and elastic energy as measures of tumour mechanopathology. figsharehttp://dx.doi.org/10.6084/m9.figshare.3796092 (2016).

Download references

Acknowledgements

We thank S. Roberge, C. Smith, J. Kahn and M. Duquette for technical assistance. We also thank P. Huang, N. Bardeesy and T. Irimura for providing MMTV-M3C, AK4.4 and SL4 cells, respectively. This work was supported in part by funding from the National Cancer Institute (P01-CA080124), an NCI Outstanding Investigator Award (R35-CA197743) and a Department of Defense Breast Cancer Research Innovator award (W81XWH-10-1-0016) to R.K.J., a DP2 OD008780 to T.P.P., a R01 grant (HL128168) to L.L.M., T.P.P. and J.W.B., a Susan G. Komen Foundation Fellowship (PDF14301739) to G.S., a National Institutes of Health award (F31HL126449) to M.D., and an UNCF-Merck Science Initiative Postdoctoral Fellowship, Burroughs Wellcome Fund Postdoctoral Enrichment Program Award and a NCI grant (F32CA183465) to D.J.

Author information

Authors and Affiliations

Authors

Contributions

H.T.N. and R.K.J. designed the study; H.T.N., H.L., G.S., M.D., D.J., N.R., J.I., K.J. performed the research; H.T.N., H.L., G.S., M.D., D.J., N.R., J.I., V.P.C., K.J., J.D.M., V.A., T.P.P., D.F., Y.B., F.J.H., A.J.G., J.W.B., L.L.M. and R.K.J. analysed the data; H.T.N., M.D., G.S., V.P.C., L.L.M. and R.K.J. wrote the manuscript.

Corresponding author

Correspondence to Rakesh K. Jain.

Ethics declarations

Competing interests

R.K.J. received consultant fees from Ophthotech, SPARC, SynDevRx and XTuit. R.K.J. owns equity in Enlight, Ophthotech, SynDevRx and XTuit, and serves on the Board of Directors of XTuit and the Boards of Trustees of Tekla Healthcare Investors, Tekla Life Sciences Investors, the Tekla Healthcare Opportunities Fund and the Tekla World Healthcare Fund. No reagents or funding from these companies were used in these studies.

Supplementary information

Supplementary information

Supplementary Notes, Figures and Tables (PDF 1138 kb)

MATLAB scripts

Custom MATLAB code (ZIP 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nia, H., Liu, H., Seano, G. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 1, 0004 (2017). https://doi.org/10.1038/s41551-016-0004

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-016-0004

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer