Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Titan brighter at twilight than in daylight

Abstract

Investigating the overall brightness of planets (and moons) provides insights into their envelopes and energy budgets14. Phase curves (a representation of the overall brightness versus the Sun–object–observer phase angle) for Titan have been published over a limited range of phase angles and spectral passbands5,6. Such information has been key to the study of the stratification, microphysics and aggregate nature of Titan’s atmospheric haze7,8 and has complemented the spatially resolved observations showing that the haze scatters efficiently in the forward direction7,9. Here, we present Cassini Imaging Science Subsystem whole-disk brightness measurements of Titan from ultraviolet to near-infrared wavelengths. The observations show that Titan’s twilight (loosely defined as the view at phase angles 150°) outshines its daylight at various wavelengths. From the match between measurements and models, we show that at even larger phase angles, the back-illuminated moon will appear much brighter than when fully illuminated. This behaviour is unique in our Solar System to Titan and is caused by its extended atmosphere and the efficient forward scattering of sunlight by its atmospheric haze. We infer a solar energy deposition rate (for a solar constant of 14.9 W m−2) of (2.84 ± 0.11) × 1014 W, consistent to within one to two standard deviations with Titan’s time-varying thermal emission from 2007 to 201310,11. We propose that a forward scattering signature may also occur at large phase angles in the brightness of exoplanets with extended hazy atmospheres and that this signature has a valuable diagnostic potential for atmospheric characterization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Titan phase curves inferred in this work.
Figure 2: Full disk albedo spectrum at phase angle α = 5.7°.
Figure 3: Radiative transfer modelling.
Figure 4: Rates for incident solar energy and energy scattered by Titan.

Similar content being viewed by others

References

  1. Russell, H. N. On the albedo of the planets and their satellites. Astrophys. J. 43, 173–196 (1916).

    Article  ADS  Google Scholar 

  2. Arking, A. & Potter, J. The phase curve of Venus and the nature of its clouds. J. Atmos. Sci. 25, 617–628 (1968).

    Article  ADS  Google Scholar 

  3. Goode, P. R. et al. Earthshine observations of the Earth’s reflectance. Geophys. Res. Lett. 28, 1671–1674 (2001).

    Article  ADS  Google Scholar 

  4. Mallama, A., Wang, D. & Howard, R. A. Photometry of Mercury from SOHO/LASCO and Earth. The Phase Function from 2 to 170 deg. Icarus 55, 253–264 (2002).

    Article  ADS  Google Scholar 

  5. Tomasko, M. G. & Smith, P. H. Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties. Icarus 51, 65–95 (1982).

    Article  ADS  Google Scholar 

  6. West, R. A. et al. Voyager 2 photopolarimeter observations of Titan. J. Geophys. Res. 88, 8699–8708 (1983).

    Google Scholar 

  7. Rages, K. & Pollack, J. B. Titan aerosols: optical properties and vertical distribution. Icarus 41, 119–130 (1983).

    Article  ADS  Google Scholar 

  8. West, R. A. & Smith, P. H. Evidence for aggregate particles in the atmospheres of Titan and Jupiter. Icarus 90, 330–333 (1991).

    Article  ADS  Google Scholar 

  9. Rages, K., Pollack, J. B. & Smith, P. H. Size estimates of Titan’s aerosols based on Voyager high-phase-angle images. J. Geophys. Res. 88, 8721–8728 (1983).

    Article  ADS  Google Scholar 

  10. Li, L. et al. The global energy balance of Titan. Geophys. Res. Lett. 38, L23201 (2011).

    ADS  Google Scholar 

  11. Li, L. Dimming Titan revealed by the Cassini observations. Sci. Rep. 5, 8239 (2015).

  12. Porco, C. C. et al. Cassini Imaging Science: instrument characteristics and anticipated scientific investigations at Saturn. Space Sci. Rev. 115, 363–497 (2004).

    Article  ADS  Google Scholar 

  13. West, R.A. et al. In-flight calibration of the Cassini imaging science sub-system cameras. Planet. Space Sci. 58, 1475–1488 (2010).

    Article  ADS  Google Scholar 

  14. Karkoschka, E. Methane, ammonia, and temperature measurements of the Jovian planets and Titan from CCD-spectrophotometry. Icarus 133, 134–146 (1998).

    Article  ADS  Google Scholar 

  15. Tomasko, M. G. et al. A model of Titan’s aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669–707 (2008).

    Article  ADS  Google Scholar 

  16. Doose, L. R., Karkoschka, E., Tomasko, M. G. & Anderson, C. M. Vertical structure and optical properties of Titan’s aerosols from radiance measurements made inside and outside the atmosphere. Icarus 270, 355–375 (2016).

    Article  ADS  Google Scholar 

  17. Lemmon, M. T., Karkoschka, E. & Tomasko, M. Titan’s rotational light-curve. Icarus 113, 27–38 (1995).

    Article  ADS  Google Scholar 

  18. Negrão, A. et al. Titan’s surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra. Planet. Space Sci. 54, 1225–1246 (2006).

    Article  ADS  Google Scholar 

  19. Hubbard, W. B. et al. The occultation of 28 Sgr by Titan. Astron. Astrophys. 269, 541–563 (1993).

    ADS  Google Scholar 

  20. García Muñoz, A. & Mills, F. P. Pre-conditioned backward Monte Carlo solutions to radiative transport in planetary atmospheres. Fundamentals: sampling of propagation directions in polarising media. Astron. Astrophys. 573, A72 (2015).

    Article  ADS  Google Scholar 

  21. Younkin, R. L. The albedo of Titan. Icarus 21, 219–229 (1974).

    Article  ADS  Google Scholar 

  22. Lavvas, P., Yelle, R. V. & Griffith, C. A. Titan’s vertical aerosol structure at the Huygens landing site: constraints on particle size, density, charge, and refractive index. Icarus 210, 832–842 (2010).

    Article  ADS  Google Scholar 

  23. Rannou, P. et al. Titan haze distribution and optical properties retrieved from recent observations. Icarus 208, 850–867 (2010).

    Article  ADS  Google Scholar 

  24. Mallama, A., Wang, D. & Howard, R. A. Venus phase function and forward scattering from H2SO4 . Icarus 182, 10–22 (2006).

    Article  ADS  Google Scholar 

  25. Tomasko, M. G & West, R. A. in Titan from Cassini-Huygens (eds Brown, R. H. et al. ) 297–321 (Springer, 297–321, 2010).

    Google Scholar 

  26. West, R. A., Lavvas, P., Anderson, C. & Imanaka, H. in Titan: Interior, Surface, Atmosphere, and Space Environment (ed. Müller-Wodarg, I. ) 285–321 (Cambridge Univ. Press, 2014).

    Google Scholar 

  27. Neff, J. S., Ellis, T. A., Apt, J. & Bergstralh, J. T. Bolometric albedos of Titan, Uranus, and Neptune. Icarus 62, 425–432 (1985).

    Article  ADS  Google Scholar 

  28. Demory, B.-O. & Seager, S. Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. Astrophys. J. Suppl. Ser. 197, 12 (2011).

    Article  ADS  Google Scholar 

  29. García Muñoz, A. & Isaak, K. G. Probing exoplanet clouds with optical phase curves. Proc. Natl Acad. Sci. USA 112, 13461–13466 (2015).

    Article  ADS  Google Scholar 

  30. Lammer, H. et al. Identifying the ‘true’ radius of the hot sub-Neptune CoRoT-24b by mass-loss modelling. Mon. Not. R. Astron. Soc. Lett. 461, L62–L66 (2016).

    Article  ADS  Google Scholar 

  31. Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    Article  ADS  Google Scholar 

  32. Helling, C. & Fomins, A. Modelling the formation of atmospheric dust in brown dwarfs and planetary atmospheres. Phil. Trans. R Soc. A 371, 20110581–20110581 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  33. Marley, M. S., Ackerman, A. S., Cuzzi, J. N. & Kitzmann, D. in Comparative Climatology of Terrestrial Planets (eds Mackwell, S. J. et al. ) 367–391 (Univ. Arizona Press, 2013).

    Google Scholar 

  34. de Kok, R. J. & Stam, D. M. The influence of forward-scattered light in transmission measurements of (exo)planetary atmospheres. Icarus 221, 517–524 (2012).

    Article  ADS  Google Scholar 

  35. Knowles, B. Cassini Imaging Science Subsystem (ISS). Data User’s Guide (Cassini Imaging Central Laboratory for Operations, 2014).

  36. García Muñoz, A. Towards a comprehensive model of Earth’s disk-integrated Stokes vector. Int. J. Astrobiol. 14, 379–390 (2015).

    Article  Google Scholar 

  37. Lockwood, G. W. & Thompson, D. T. Seasonal photometric variability of Titan, 1972–2006. Icarus 200, 616–626 (2009).

    Article  ADS  Google Scholar 

  38. Sromovsky, L. A. et al. Implications of Titan’s north–south brightness asymmetry. Nature 292, 698–702 (1981).

    Article  ADS  Google Scholar 

  39. García Muñoz, A., Pérez-Hoyos, S. & Sánchez-Lavega, A. Glory revealed in disk-integrated photometry of Venus. Astron. Astrophys. 566, L1 (2014).

    Article  ADS  Google Scholar 

  40. Loughman, R. P. et al. Comparison of radiative transfer models for limb-viewing scattered sunlight measurements. J. Geophys. Res. 109, D06303 (2004).

    Article  ADS  Google Scholar 

  41. Postylyakov, O. V. Linearized vector radiative transfer model MCC++ for a spherical atmosphere. J. Quant. Spectrosc. Radiat. Transf. 88, 297–317 (2004).

    Article  ADS  Google Scholar 

  42. Fulchignoni, M. et al. In situ measurements of the physical characteristics of Titan’s environment. Nature 438, 785–791 (2005).

    Article  ADS  Google Scholar 

  43. Karkoschka, E. & Schröder, S. E. Eight-color maps of Titan’s surface from spectroscopy with Huygens’ DISR Icarus 270, 260–271 (2016).

    Article  ADS  Google Scholar 

  44. Karkoschka, E. & Lorenz, R. D. Latitudinal variation of aerosol sizes inferred from Titan’s shadow. Icarus 125, 369–379 (1997).

    Article  ADS  Google Scholar 

  45. Lecavelier des Etangs, A., Vidal-Madjar, A., Désert, J. -M. & Sing, D. Rayleigh scattering by H2 in the extrasolar planet HD 209458b. Astron. Astrophys. 485, 865–869 (2008).

    Article  ADS  Google Scholar 

  46. García Muñoz, A. et al. Glancing views of the Earth: from a lunar eclipse to an exoplanetary transit. Astrophys. J. 755, 103 (2012).

    Article  ADS  Google Scholar 

  47. Mori, K. et al. An X-ray measurement of Titan’s atmospheric extent from its transit of the Crab Nebula. Astrophys. J. 607, 1065–1069 (2004).

    Article  ADS  Google Scholar 

  48. Wehrli, C. Extraterrestrial Solar Spectrum (PMOD Publication 615, 1985).

    Google Scholar 

  49. Robinson, T. D., Maltagliati, L., Marley, M. S. & Fortney, J. J. Titan solar occultation observations reveal transit spectra of a hazy world. Proc. Natl Acad. Sci. USA 111, 9042–9047 (2014).

    Article  ADS  Google Scholar 

  50. McGrath, M. A ., Courtin, R ., Smith, T. E ., Feldman, P. D & Strobel, D. F. The ultraviolet albedo of Titan. Icarus 131, 382–392 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.G.M. gratefully acknowledges correspondence with L.A. Sromovsky and P.M. Fry on Voyager 2 observations. P.L. acknowledges financial support from the Programme National de Planétologie of the Institut National des Sciences de l’Univers/Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Contributions

A.G.M. devised the research, performed the data reduction and model simulations and wrote the manuscript. P.L. provided various haze properties. R.A.W. provided insight into the treatment of images. P.L. and R.A.W. provided valuable expertise on Titan’s atmosphere. All authors discussed the content of the manuscript.

Corresponding author

Correspondence to A. García Muñoz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figure 1 and Supplementary Table 1 (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Muñoz, A., Lavvas, P. & West, R. Titan brighter at twilight than in daylight. Nat Astron 1, 0114 (2017). https://doi.org/10.1038/s41550-017-0114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing