Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus

Abstract

Dysregulated B-cell activation plays pivotal roles in systemic lupus erythematosus (SLE), which makes B-cell depletion a potential strategy for SLE treatment. The clinical success of anti-CD19 CAR-T cells in treating B-cell malignancies has attracted the attention of researchers. In this study, we aimed to investigate the feasibility of applying anti-CD19 CAR-T cell therapy to SLE treatment in a mouse disease model. We constructed murine anti-CD19 CARs with either CD28 or 4-1BB as the intracellular costimulatory motif and evaluated the therapeutic function of the corresponding CAR-T cells by infusing them into MRL-lpr mice. Furthermore, anti-CD19 CAR-T cells were transferred to MRL-lpr mice before the onset of disease to determine their role in SLE prevention. According to our observations, compared with antibody treatment, the adoptive transfer of our anti-CD19 CAR-T cells showed a more sustained B-cell-depletion effect in MRL-lpr mice. The transfer of syngeneic anti-CD19 CAR-T cells not only prevented disease pathogenesis before the onset of disease symptoms but also displayed therapeutic benefits at a later stage after disease progression. We also tried to optimize the treatment strategy and found that compared with CAR-T cells with the CD28 costimulatory motif, CAR-T cells with the 4-1BB costimulatory motif showed better therapeutic efficiency without cell enrichment. Taken together, these results show that anti-CD19 CAR-T cell therapy was effective in the prevention and treatment of a murine model of SLE, indicating its potential for clinical use in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  Google Scholar 

  2. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  Google Scholar 

  3. Xiong, W. & Lahita, R. G. Pragmatic approaches to therapy for systemic lupus erythematosus. Nat. Rev. Rheumatol. 10, 97–107 (2014).

    Article  CAS  Google Scholar 

  4. Isenberg, D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74, 2006–2015 (2015).

    Article  CAS  Google Scholar 

  5. Furie, R. A. et al. A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann. Rheum. Dis. 74, 1667–1675 (2015).

    Article  CAS  Google Scholar 

  6. Vital, E. M. et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 63, 3038–3047 (2011).

    Article  CAS  Google Scholar 

  7. Jonsdottir, T., Sundelin, B., Welin Henriksson, E., van Vollenhoven, R. F. & Gunnarsson, I. Rituximab-treated membranous lupus nephritis: clinical outcome and effects on electron dense deposits. Ann. Rheum. Dis. 70, 1172–1173 (2011).

    Article  Google Scholar 

  8. Arce-Salinas, C. A., Rodriguez-Garcia, F. & Gomez-Vargas, J. I. Long-term efficacy of anti-CD20 antibodies in refractory lupus nephritis. Rheumatol. Int. 32, 1245–1249 (2012).

    Article  CAS  Google Scholar 

  9. Gregersen, J. W. & Jayne, D. R. B-cell depletion in the treatment of lupus nephritis. Nat. Rev. Nephrol. 8, 505–514 (2012).

    Article  CAS  Google Scholar 

  10. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    Article  CAS  Google Scholar 

  11. Mei, H. E., Schmidt, S. & Dorner, T. Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res. Ther. 14(Suppl 5), S1 (2012).

    Article  Google Scholar 

  12. Jyothi, M. D., Flavell, R. A. & Geiger, T. L. Targeting autoantigen-specific T cells and suppression of autoimmune encephalomyelitis with receptor-modified T lymphocytes. Nat. Biotechnol. 20, 1215–1220 (2002).

    Article  CAS  Google Scholar 

  13. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article  CAS  Google Scholar 

  14. Zhang, L. et al. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. J. Autoimmun. 96, 50–58 (2019).

    Article  CAS  Google Scholar 

  15. Fransson, M. et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J. Neuroinflammation 9, 112 (2012).

    Article  CAS  Google Scholar 

  16. Blat, D., Zigmond, E., Alteber, Z., Waks, T. & Eshhar, Z. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol. Ther. 22, 1018–1028 (2014).

    Article  CAS  Google Scholar 

  17. MacDonald, K. G. et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J. Clin. Investig. 126, 1413–1424 (2016).

    Article  Google Scholar 

  18. Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med. 11, eaav1648. https://doi.org/10.1126/scitranslmed.aav1648. (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kochenderfer, J. N., Yu, Z., Frasheri, D., Restifo, N. P. & Rosenberg, S. A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 116, 3875–3886 (2010).

    Article  CAS  Google Scholar 

  20. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  CAS  Google Scholar 

  21. Cheadle, E. J. et al. Natural expression of the CD19 antigen impacts the long-term engraftment but not antitumor activity of CD19-specific engineered T cells. J. Immunol. 184, 1885–1896 (2010).

    Article  CAS  Google Scholar 

  22. Abraham, P. M., Quan, S. H., Dukala, D. & Soliven, B. CD19 as a therapeutic target in a spontaneous autoimmune polyneuropathy. Clin. Exp. Immunol. 175, 181–191 (2014).

    Article  CAS  Google Scholar 

  23. Hofmann, K., Clauder, A. K. & Manz, R. A. Targeting B cells and plasma cells in autoimmune diseases. Front. Immunol. 9, 835 (2018).

    Article  Google Scholar 

  24. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    Article  CAS  Google Scholar 

  25. Li, S. et al. CD33-specific chimeric antigen receptor T cells with different co-stimulators showed potent anti-leukemia efficacy and different phenotype. Hum. Gene Ther. 29, 626–639 (2018).

    Article  CAS  Google Scholar 

  26. Priceman, S. J. et al. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncoimmunology 7, e1380764 (2018).

    Article  Google Scholar 

  27. Du, H. et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell 35, 221–37 e8 (2019).

    Article  CAS  Google Scholar 

  28. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019).

    Article  CAS  Google Scholar 

  29. van Bekkum, D. W. Effectiveness and risks of total body irradiation for conditioning in the treatment of autoimmune disease with autologous bone marrow transplantation. Rheumatology 38, 757–761 (1999).

    Article  Google Scholar 

  30. Zhao, J. et al. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum. 65, 3176–3185 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Richard Sloan (University of Edinburgh) for manuscript editing, Yingying Huang from the core facilities (ZJU School of Medicine) for technical assistance in FACS analysis, and Huihui Su from the ZJU Affiliated Animal Hospital for technical assistance in the analysis of mouse samples. This work was supported by grants from the National Natural Science Foundation of China (31770954, 31530019 to L.L. and 31900628 to Q.X.) and the Fundamental Research Funds for the Central Universities (2018XZZX001-12 to L.L.).

Author information

Authors and Affiliations

Authors

Contributions

X.J., C.P., C.L., L.X., and L.L. designed the research; X.J., Q.X., K.Z., and Y.J. performed the research; X.J. and L.L. analyzed the data; and X.J., Y.H., L.X., and L.L. wrote the paper.

Corresponding authors

Correspondence to Yongmei Han or Linrong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Xu, Q., Pu, C. et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol 18, 1896–1903 (2021). https://doi.org/10.1038/s41423-020-0472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0472-1

Keywords

This article is cited by

Search

Quick links