Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis

Abstract

Alterations of the retinoblastoma and/or the p53 signaling network are associated with specific cancers such as high-grade astrocytoma/glioblastoma, small-cell lung cancer (SCLC), choroid plexus tumors, and small-cell pancreatic neuroendocrine carcinoma (SC-PaNEC). However, the intricate functional redundancy between RB1 and the related pocket proteins RBL1/p107 and RBL2/p130 in suppressing tumorigenesis remains poorly understood. Here we performed lineage-restricted parallel inactivation of rb1 and rbl1 by multiplex CRISPR/Cas9 genome editing in the true diploid Xenopus tropicalis to gain insight into this in vivo redundancy. We show that while rb1 inactivation is sufficient to induce choroid plexus papilloma, combined rb1 and rbl1 inactivation is required and sufficient to drive SC-PaNEC, retinoblastoma and astrocytoma. Further, using a novel Li-Fraumeni syndrome-mimicking tp53 mutant X. tropicalis line, we demonstrate increased malignancy of rb1/rbl1-mutant glioma towards glioblastoma upon concomitant inactivation of tp53. Interestingly, although clinical SC-PaNEC samples are characterized by abnormal p53 expression or localization, in the current experimental models, the tp53 status had little effect on the establishment and growth of SC-PaNEC, but may rather be essential for maintaining chromosomal stability. SCLC was only rarely observed in our experimental setup, indicating requirement of additional or alternative oncogenic insults. In conclusion, we used CRISPR/Cas9 to delineate the tumor suppressor properties of Rbl1, generating new insights in the functional redundancy within the retinoblastoma protein family in suppressing neuroendocrine pancreatic cancer and glioma/glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tp53 mutant X. tropicalis develop hematological malignancy and sarcomas.
Fig. 2: Small-cell pancreatic neuroendocrine carcinoma (SC-PaNEC) in X. tropicalis upon mosaic CRISPR/Cas9 genome editing of rb1 and rbl1 in the anterior endoderm.
Fig. 3: Rb1 and rbl1 crispants (ectodermal targeted) develop retinoblastoma, excessive black skin pigmentation and a spectrum of brain tumors.
Fig. 4: Choroid plexus (CP) tumors arising in rb1/rbl1 crispants differ in grade according to their tp53 genotype.
Fig. 5: Rbl1 functions as a tumor suppressor in glioblastoma, while tp53 inactivation underlies progression.

Similar content being viewed by others

References

  1. Tong Y, Merino D, Nimmervoll B, Gupta K, Wang Y-D, Finkelstein D, et al. Cross-species genomics identifies TAF12, NFYC, and RAD54L as choroid plexus carcinoma oncogenes. Cancer Cell. 2015;27:712–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  CAS  Google Scholar 

  3. Chow LML, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, et al. Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell. 2011;19:305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Konukiewitz B, Schlitter AM, Jesinghaus M, Pfister D, Steiger K, Segler A, et al. Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20%. Mod Pathol. 2017;30:587–98.

    Article  CAS  PubMed  Google Scholar 

  5. George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hann CL, Rudin CM. Management of small-cell lung cancer: incremental changes but hope for the future. Oncology. 2008;22:1486–92.

    PubMed  Google Scholar 

  7. Basturk O, Yang Z, Tang LH, Hruban RH, Adsay V, McCall CM, et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am J Surg Pathol. 2015;39:683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tabori U, Shlien A, Baskin B, Levitt S, Ray P, Alon N, et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28:1995–2001.

    Article  CAS  PubMed  Google Scholar 

  9. Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW, Ye L, et al. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci. 2017;20:1329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dannenberg J-H, Schuijff L, Dekker M, Van Der Valk M, Te Riele H. Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130. 2004. https://doi.org/10.1101/gad.322004.

  11. Costa C, Paramio JM, Santos M. Skin tumors Rb(eing) uncovered. Front Oncol. 2013;3:307.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Robanus-Maandag E, Dekker M, van der Valk M, Carrozza ML, Jeanny JC, Dannenberg JH, et al. p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev. 1998;12:1599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naert T, Colpaert R, Van Nieuwenhuysen T, Dimitrakopoulou D, Leoen J, Haustraete J, et al. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep. 2016;6. https://doi.org/10.1038/srep35264.

  14. Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell. 2002;1:157–68.

    Article  CAS  PubMed  Google Scholar 

  15. Lu X, Magrane G, Yin C, Louis DN, Gray J, Van Dyke T. Selective inactivation of p53 facilitates mouse epithelial tumor progression without chromosomal instability. Mol Cell Biol. 2001;21:6017–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naert T, Van Nieuwenhuysen T, Vleminckx K. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models. Genesis. 2017;55:e23005.

    Article  CAS  Google Scholar 

  17. Bougeard G, Renaux-Petel M, Flaman J-M, Charbonnier C, Fermey P, Belotti M, et al. Revisiting Li-fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33:2345–52.

    Article  CAS  PubMed  Google Scholar 

  18. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356:215–21.

    Article  CAS  PubMed  Google Scholar 

  19. Ignatius MS, Hayes MN, Moore FE, Tang Q, Garcia SP, Blackburn PR, et al. tp53 deficiency causes a wide tumor spectrum and increases embryonal rhabdomyosarcoma metastasis in zebrafish. Elife. 2018;7. https://doi.org/10.7554/eLife.37202.

  20. Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CDM, et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci. 2005;102:407–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Manning AL, Benes C, Dyson NJ. Whole chromosome instability resulting from the synergistic effects of pRB and p53 inactivation. Oncogene. 2014;33:2487–94.

    Article  CAS  PubMed  Google Scholar 

  22. Eischen CM. Genome stability requires p53. Cold Spring Harb Perspect Med. 2016;6:a026096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naert T, Vleminckx K. CRISPR/Cas9 disease models in zebrafish and Xenopus: the genetic renaissance of fish and frogs. Drug Discov Today Technol. 2018;28:41–52.

    Article  PubMed  Google Scholar 

  24. Boel A, Steyaert W, De Rocker N, Menten B, Callewaert B, De Paepe A, et al. BATCH-GE: batch analysis of next-generation sequencing data for genome editing assessment. Sci Rep. 2016;6:30330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neely HR, Guo J, Flowers EM, Criscitiello MF, Flajnik MF. ‘Double-duty’ conventional dendritic cells in the amphibian Xenopus as the prototype for antigen presentation to B cells. Eur J Immunol. 2018;48:430–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ward JM, Tadesse-Heath L, Perkins SN, Chattopadhyay SK, Hursting SD, Morse HC. Splenic marginal zone B-cell and thymic T-cell lymphomas in p53-deficient mice. Lab Investig. 1999;79:3–14.

    CAS  PubMed  Google Scholar 

  27. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4:1–7.

    Article  CAS  PubMed  Google Scholar 

  28. Maresch R, Mueller S, Veltkamp C, Öllinger R, Friedrich M, Heid I, et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun. 2016;7. https://doi.org/10.1038/ncomms10770.

  29. van Zoest ID, Heijmen PS, Cruijsen PMJM, Jenks BG. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone. Gen Comp Endocrinol. 1989;76:19–28.

    Article  PubMed  Google Scholar 

  30. Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14:994–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. McEvoy J, Flores-Otero J, Zhang J, Nemeth K, Brennan R, Bradley C, et al. Coexpression of normally incompatible developmental pathways in retinoblastoma genesis. Cancer Cell. 2011;20:260–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  33. Steed TC, Treiber JM, Patel K, Ramakrishnan V, Merk A, Smith AR, et al. Differential localization of glioblastoma subtype: implications on glioblastoma pathogenesis. Oncotarget. 2016;7:24899–907.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schaffer BE, Park K-S, Yiu G, Conklin JF, Lin C, Burkhart DL, et al. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res. 2010;70:3877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36:173–84.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abou-El-Ardat K, Seifert M, Becker K, Eisenreich S, Lehmann M, Hackmann K, et al. Comprehensive molecular characterization of multifocal glioblastoma proves its monoclonal origin and reveals novel insights into clonal evolution and heterogeneity of glioblastomas. Neuro Oncol. 2017;19:546–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wiedemeyer WR, Dunn IF, Quayle SN, Zhang J, Chheda MG, Dunn GP, et al. Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proc Natl Acad Sci USA. 2010;107:11501–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schmid RS, Simon JM, Vitucci M, McNeill RS, Bash RE, Werneke AM, et al. Core pathway mutations induce de-differentiation of murine astrocytes into glioblastoma stem cells that are sensitive to radiation but resistant to temozolomide. Neuro Oncol. 2016;18:962–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu F, Gong J, Huang W, Wang Z, Wang M, Yang J, et al. MicroRNA-106b-5p boosts glioma tumorigensis by targeting multiple tumor suppressor genes. Oncogene. 2014;33:4813–22.

    Article  CAS  PubMed  Google Scholar 

  40. Vitucci M, Irvin DM, McNeill RS, Schmid RS, Simon JM, Dhruv HD, et al. Genomic profiles of low-grade murine gliomas evolve during progression to glioblastoma. Neuro Oncol. 2017;19:1237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wojton J, Chu Z, Mathsyaraja H, Meisen WH, Denton N, Kwon C-H, et al. Systemic delivery of SapC-DOPS has antiangiogenic and antitumor effects against glioblastoma. Mol Ther. 2013;21:1517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vanderluit JL, Wylie CA, McClellan KA, Ghanem N, Fortin A, Callaghan S, et al. The retinoblastoma family member p107 regulates the rate of progenitor commitment to a neuronal fate. J Cell Biol. 2007;178:129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan D, Chen Y, Du Y, Ren Z, Li X, Hu B. Methylation of promoter of RBL1 enhances the radioresistance of three dimensional cultured carcinoma cells. Oncotarget. 2017;8:4422–35.

    PubMed  Google Scholar 

  44. Harb G, Vasavada RC, Cobrinik D, Stewart AF. The retinoblastoma protein and its homolog p130 regulate the G1/S transition in pancreatic beta-cells. Diabetes. 2009;58:1852–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai EP, Luk CT, Wu X, Schroer SA, Shi SY, Sivasubramaniyam T, et al. Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action. Diabetologia. 2014;57:2555–65.

    Article  CAS  PubMed  Google Scholar 

  46. Vasavada RC, Cozar-Castellano I, Sipula D, Stewart AF. Tissue-specific deletion of the retinoblastoma protein in the pancreatic beta-cell has limited effects on beta-cell replication, mass, and function. Diabetes. 2007;56:57–64.

    Article  CAS  PubMed  Google Scholar 

  47. Glenn ST, Jones CA, Sexton S, LeVea CM, Caraker SM, Hajduczok G, et al. Conditional deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant metastatic pancreatic neuroendocrine carcinoma. Oncogene. 2014;33:5706–15.

    Article  CAS  PubMed  Google Scholar 

  48. Solin SL, Shive HR, Woolard KD, Essner JJ, McGrail M. Rapid tumor induction in zebrafish by TALEN-mediated somatic inactivation of the retinoblastoma1 tumor suppressor rb1. Sci Rep. 2015;5:13745.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shim J, Choi J-H, Park M-H, Kim H, Kim JH, Kim S-Y, et al. Development of zebrafish medulloblastoma-like PNET model by TALEN-mediated somatic gene inactivation. Oncotarget. 2017;8:55280–97.

    PubMed  PubMed Central  Google Scholar 

  50. Jiang Z, Deng T, Jones R, Li H, Herschkowitz JI, Liu JC, et al. Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J Clin Investig. 2010;120:3296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi Z, Xin H, Tian D, Lian J, Wang J, Liu G, et al. Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system. FASEB J. 2019;33:6962–8.

    Article  CAS  PubMed  Google Scholar 

  52. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57

  53. Strecker J, Ladha A, Gardner Z, Schmid-Burgk JL, Makarova KS, Koonin EV, et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science. 2019;365:48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naert T, Nieuwenhuysen T Van, Demuynck S, Grande S de, Przybyl J, Vuylsteke M, et al. CRISPR-NSID: an in vivo CRISPR/Cas9 negative selection screen reveals EZH2 as a druggable dependency factor in a genetic desmoid tumor model. 2019. https://www.biorxiv.org/content/10.1101/595769v1.

  55. Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, Khokha MK, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015;12:982–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naert T, Vleminckx K. Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering. Methods Mol Biol. 2018;1865:33–54.

    Article  CAS  PubMed  Google Scholar 

  57. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1.

    Article  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratory is supported by the Research Foundation—Flanders (FWO-Vlaanderen) (grants G0A1515N and G029413N), by the Belgian Science Policy (Interuniversity Attraction Poles—IAP7/07) and by the Concerted Research Actions from Ghent University (BOF15/GOA/011). Further support was obtained by the Hercules Foundation, Flanders (grant AUGE/11/14) and the Desmoid Tumor Research Foundation. TN is funded by “Kom op tegen Kanker” (Stand up to Cancer), the Flemish cancer society and previously held PhD fellowship with VLAIO-HERMES during the course of this work. DT and MC have a PhD fellowship from the Research Foundation—Flanders (FWO-Vlaanderen). We thank the Xenopus laevis Resource for Immunobiology (Rochester, NY, NIH R24 AI059830) for the kind gift of monoclonal antibody AM20 (10A91, CD8). We are indebted to Tim Deceuninck for animal care, Kelly Lemeire for technical assistance with TUNEL staining. We would like to thank the VIB BioImaging Core, and in particular Chris Guerin, Eef Parthoens, and Anneke Kremer, for access to the instrument park, training, and support.

Author information

Authors and Affiliations

Authors

Contributions

TN, DDi, and KV designed the study. DDi, TN, DT, and RN were involved in generation and phenotyping of the tp53 mutant X. tropicalis. TN performed genome engineering and phenotyping of all rb1/rbl1, rb1/rbl1/tp53, and rb1/rbl1/tp53/pten mutants. TN, LE, and DDe were involved in laser-capture microdissection and downstream analysis. DC and JvD performed pathological analysis. DT, DDi, and GvI performed flow cytometry experiments. CV performed X-ray imaging. SD provided technical assistance throughout the project. MC performed BATCH-GE analysis of targeted amplicon sequencing data. TN and KV wrote the paper.

Corresponding author

Correspondence to Kris Vleminckx.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naert, T., Dimitrakopoulou, D., Tulkens, D. et al. RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis. Oncogene 39, 2692–2706 (2020). https://doi.org/10.1038/s41388-020-1173-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1173-z

This article is cited by

Search

Quick links