Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Revisiting the concept of cancer stem cells in prostate cancer

Abstract

The cancer stem cell (CSC) model proposes that cells within a tumor are organized in a hierarchical lineage relationship and display different tumorigenic potential, suggesting that effective therapeutics should target rare CSCs that sustain tumor malignancy. Here we review the current status of studies to identify CSCs in human prostate cancer as well as mouse models, with an emphasis on discussing different functional assays and their advantages and limitations. We also describe current controversies regarding the identification of prostate epithelial stem cells and cell types of origin for prostate cancer, and present potential resolutions of these issues. Although definitive evidence for the existence of CSCs in prostate cancer is still lacking, future directions pursuing the identification of tumor-initiating stem cells in the mouse may provide important advances in evaluating the CSC model for prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abate-Shen C, Shen MM . (2000). Molecular genetics of prostate cancer. Genes Dev 14: 2410–2434.

    CAS  PubMed  Google Scholar 

  • Abate-Shen C, Shen MM, Gelmann E . (2008). Integrating differentiation and cancer: the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Differentiation 76: 717–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. 100: 3983–3988.

  • Attard G, Cooper CS, de Bono JS . (2009). Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell 16: 458–462.

    CAS  PubMed  Google Scholar 

  • Barabe F, Kennedy JA, Hope KJ, Dick JE . (2007). Modeling the initiation and progression of human acute leukemia in mice. Science 316: 600–604.

    CAS  PubMed  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007.

    CAS  PubMed  Google Scholar 

  • Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M et al. (2009). Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457: 608–611.

    CAS  PubMed  Google Scholar 

  • Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH et al. (2010). Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6: 25–36.

    CAS  PubMed  Google Scholar 

  • Birnie R, Bryce SD, Roome C, Dussupt V, Droop A, Lang SH et al. (2008). Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9: R83.

    PubMed  PubMed Central  Google Scholar 

  • Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP et al. (2010). Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466: 133–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonkhoff H, Stein U, Remberger K . (1994). The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 24: 114–118.

    CAS  PubMed  Google Scholar 

  • Bonkhoff H, Remberger K . (1996). Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28: 98–106.

    CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE . (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.

    CAS  PubMed  Google Scholar 

  • Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K et al. (2005). Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. 102: 7180–7185.

  • Chen Y, Sawyers CL, Scher HI . (2008). Targeting the androgen receptor pathway in prostate cancer. Curr Opin Pharmacol 8: 440–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G et al. (2008). Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 26: 364–371.

    CAS  PubMed  Google Scholar 

  • Clark J, Attard G, Jhavar S, Flohr P, Reid A, De-Bono J et al. (2008). Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27: 1993–2003.

    CAS  PubMed  Google Scholar 

  • Collins AT, Habib FK, Maitland NJ, Neal DE . (2001). Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J Cell Sci 114: 3865–3872.

    CAS  PubMed  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951.

    CAS  PubMed  Google Scholar 

  • Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . (2003). Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17: 3029–3035.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha GR, Lung B . (1978). The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 205: 181–193.

    CAS  PubMed  Google Scholar 

  • Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C et al. (2009). The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. 106: 268–273.

  • English HF, Santen RJ, Isaacs JT . (1987). Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11: 229–242.

    CAS  PubMed  Google Scholar 

  • Evans GS, Chandler JA . (1987). Cell proliferation studies in the rat prostate: II The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 11: 339–351.

    CAS  PubMed  Google Scholar 

  • Feil R, Wagner J, Metzger D, Chambon P . (1997). Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237: 752–757.

    CAS  PubMed  Google Scholar 

  • Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS et al. (2010). Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 70: 491–501.

    PubMed  Google Scholar 

  • Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON . (2008). Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. 105: 20882–20887.

  • Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON . (2010). Identification of a cell of origin for human prostate cancer. Science 329: 568–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu G, Yuan J, Wills M, Kasper S . (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67: 4807–4815.

    CAS  PubMed  Google Scholar 

  • Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C et al. (2008). Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 21: 1156–1167.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haffner MC, Aryee MJ, Toubaji A, Esopi DM, Albadine R, Gurel B et al. (2010). Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet 42: 668–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RP . (2006). Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 66: 1891–1895, discussion 1890.

    CAS  PubMed  Google Scholar 

  • Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. (2004). MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6: 587–596.

    CAS  PubMed  Google Scholar 

  • Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL . (2008). CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98: 756–765.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P et al. (1999). Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 27: 4324–4327.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacs JT . (1985). Control of cell proliferation and cell death in the normal and neoplastic prostate: a stem cell model. In: Rodgers CH, Coffey DS, Cunha G, Grayshack JT, Henman R, Horton R (eds). Benign Prostatic Hyperplasia. Department of Health and Human Services: Washington, DC, pp 85–94.

    Google Scholar 

  • Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E et al. (2010). Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7: 279–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korsten H, Ziel-van der Made A, Ma X, van der Kwast T, Trapman J . (2009). Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model. PLoS One 4: e5662.

    PubMed  PubMed Central  Google Scholar 

  • Kurita T, Medina RT, Mills AA, Cunha GR . (2004). Role of p63 and basal cells in the prostate. Development 131: 4955–4964.

    CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648.

    CAS  PubMed  Google Scholar 

  • Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON . (2007). Isolation and functional characterization of murine prostate stem cells. 104: 181–186.

  • Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON . (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. 107: 2610–2615.

  • Leong KG, Wang BE, Johnson L, Gao WQ . (2008). Generation of a prostate from a single adult stem cell. Nature 456: 804–808.

    CAS  PubMed  Google Scholar 

  • Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG . (2008). PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 68: 1820–1825.

    CAS  PubMed  Google Scholar 

  • Liao CP, Adisetiyo H, Liang M, Roy-Burman P . (2010). Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res 70: 7294–7303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15: 907–913.

    CAS  PubMed  Google Scholar 

  • Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K et al. (2009). Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139: 1069–1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mani RS, Tomlins SA, Callahan K, Ghosh A, Nyati MK, Varambally S et al. (2009). Induced chromosomal proximity and gene fusions in prostate cancer. Science 326: 1230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marotta LL, Polyak K . (2009). Cancer stem cells: a model in the making. Curr Opin Genet Dev 19: 44–50.

    PubMed  Google Scholar 

  • Mazzucchelli R, Lopez-Beltran A, Cheng L, Scarpelli M, Kirkali Z, Montironi R . (2008). Rare and unusual histological variants of prostatic carcinoma: clinical significance. BJU Int 102: 1369–1374.

    PubMed  Google Scholar 

  • Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ et al. (2002). Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res 62: 6405–6409.

    CAS  PubMed  Google Scholar 

  • Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S et al. (2007). Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67: 3153–3161.

    CAS  PubMed  Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713.

    CAS  PubMed  Google Scholar 

  • Missol-Kolka E, Karbanova J, Janich P, Haase M, Fargeas CA, Huttner WB et al. (2010). Prominin-1 (CD133) is not restricted to stem cells located in the basal compartment of murine and human prostate. Prostate (doi:10.1002/pros.21239).

    PubMed  Google Scholar 

  • Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7: 403–417.

    CAS  PubMed  Google Scholar 

  • Mosquera JM, Perner S, Genega EM, Sanda M, Hofer MD, Mertz KD et al. (2008). Characterization of TMPRSS2-ERG fusion high-grade prostatic intraepithelial neoplasia and potential clinical implications. Clin Cancer Res 14: 3380–3385.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosquera JM, Mehra R, Regan MM, Perner S, Genega EM, Bueti G et al. (2009). Prevalence of TMPRSS2-ERG fusion prostate cancer among men undergoing prostate biopsy in the United States. Clin Cancer Res 15: 4706–4711.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulholland DJ, Xin L, Morim A, Lawson D, Witte O, Wu H . (2009). Lin-Sca-1+CD49f high stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69: 8555–8562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Brien CA, Pollett A, Gallinger S, Dick JE . (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110.

    CAS  PubMed  Google Scholar 

  • Passegue E, Wagner EF, Weissman IL . (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119: 431–443.

    CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65: 6207–6219.

    CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25: 1696–1708.

    CAS  PubMed  Google Scholar 

  • Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG . (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67: 6796–6805.

    CAS  PubMed  Google Scholar 

  • Peehl DM . (2005). Primary cell cultures as models of prostate cancer development. Endocr Relat Cancer 12: 19–47.

    CAS  PubMed  Google Scholar 

  • Pfeiffer MJ, Schalken JA . (2010). Stem cell characteristics in prostate cancer cell lines. Eur Urol 57: 246–254.

    CAS  PubMed  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . (2008). Efficient tumour formation by single human melanoma cells. Nature 456: 593–598.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL . (2001). Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115.

    CAS  PubMed  Google Scholar 

  • Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT . (2004). CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117: 3539–3545.

    CAS  PubMed  Google Scholar 

  • Risbridger GP, Taylor RA . (2008). Minireview: regulation of prostatic stem cells by stromal niche in health and disease. Endocrinology 149: 4303–4306.

    CAS  PubMed  Google Scholar 

  • Rosen JM, Jordan CT . (2009). The increasing complexity of the cancer stem cell paradigm. Science 324: 1670–1673.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shackleton M, Quintana E, Fearon ER, Morrison SJ . (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138: 822–829.

    CAS  PubMed  Google Scholar 

  • Sharifi N, Kawasaki BT, Hurt EM, Farrar WL . (2006). Stem cells in prostate cancer: resolving the castrate-resistant conundrum and implications for hormonal therapy. Cancer Biol Ther 5: 901–906.

    CAS  PubMed  Google Scholar 

  • Shen MM, Abate-Shen C . (2010). Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24: 1967–2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T et al. (2008). CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118: 2111–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L et al. (2000). p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 157: 1769–1775.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simak R, Capodieci P, Cohen DW, Fair WR, Scher H, Melamed J et al. (2000). Expression of c-kit and kit-ligand in benign and malignant prostatic tissues. Histol Histopathol 15: 365–374.

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    CAS  PubMed  Google Scholar 

  • Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N et al. (2010). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327: 1385–1389.

    CAS  PubMed  Google Scholar 

  • Spradling AC, Nystul T, Lighthouse D, Morris L, Fox D, Cox R et al. (2008). Stem cells and their niches: integrated units that maintain Drosophila tissues. Cold Spring Harb Symp Quant Biol 73: 49–57.

    CAS  PubMed  Google Scholar 

  • Tang Y, Hamburger AW, Wang L, Khan MA, Hussain A . (2009). Androgen deprivation and stem cell markers in prostate cancers. Int J Clin Exp Pathol 3: 128–138.

    PubMed  PubMed Central  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell 18: 11–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D et al. (2002). Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157: 1257–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV et al. (2000). Direct isolation of human central nervous system stem cells. 97: 14720–14725.

  • Ugolkov AV, Eisengart LJ, Luan C, Yang XJ . (2010). Expression analysis of putative stem cell markers in human benign and malignant prostate. Prostate (doi:10.1002/pros.21217).

    Google Scholar 

  • Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . (2008). The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68: 7711–7717.

    CAS  PubMed  Google Scholar 

  • van Leenders G, Dijkman H, Hulsbergen-van de Kaa C, Ruiter D, Schalken J . (2000). Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 80: 1251–1258.

    CAS  PubMed  Google Scholar 

  • Verhagen AP, Aalders TW, Ramaekers FC, Debruyne FM, Schalken JA . (1988). Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. Prostate 13: 25–38.

    CAS  PubMed  Google Scholar 

  • Visvader JE . (2009). Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23: 2563–2577.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JC, Dick JE . (2005). Cancer stem cells: lessons from leukemia. Trends Cell Biol 15: 494–501.

    CAS  PubMed  Google Scholar 

  • Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H . (2006). Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. 103: 1480–1485.

  • Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV et al. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461: 495–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C, Guomin W, Yujun L, Ruizhe Q . (2007). Cancer stem-like cells in human prostate carcinoma cells DU145: the seeds of the cell line? Cancer Biol Ther 6: 763–768.

    CAS  PubMed  Google Scholar 

  • Xin L, Ide H, Kim Y, Dubey P, Witte ON . (2003). in vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. 100 (Suppl 1): 11896–11903.

  • Xin L, Lawson DA, Witte ON . (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. 102: 6942–6947.

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398: 714–718.

    CAS  PubMed  Google Scholar 

  • Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D et al. (2008). Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68: 4674–4682.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT et al. (2009). Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603–607.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Cory Abate-Shen for comments on the manuscript. We apologize for our inability to cite many relevant papers due to length constraints. This work was supported by grants to MMS from the NIH and the DOD Prostate Cancer Research Program. MMS is a member of the NCI Mouse Models of Human Cancer Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Shen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Shen, M. Revisiting the concept of cancer stem cells in prostate cancer. Oncogene 30, 1261–1271 (2011). https://doi.org/10.1038/onc.2010.530

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.530

Keywords

This article is cited by

Search

Quick links