Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize

Abstract

Most terrestrial plants, including crops, engage in beneficial interactions with arbuscular mycorrhizal fungi. Vital to the association is mutual recognition involving the release of diffusible signals into the rhizosphere. Previously, we identified the maize no perception 1 (nope1) mutant to be defective in early signalling. Here, we report cloning of ZmNope1 on the basis of synteny with rice. NOPE1 encodes a functional homologue of the Candida albicans N-acetylglucosamine (GlcNAc) transporter NGT1, and represents the first plasma membrane GlcNAc transporter identified from plants. In C. albicans, exposure to GlcNAc activates cell signalling and virulence. Similarly, in Rhizophagus irregularis treatment with rice wild-type but not nope1 root exudates induced transcriptome changes associated with signalling function, suggesting a requirement of NOPE1 function for presymbiotic fungal reprogramming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutation of the orthologous genes Os04g01520 and GRMZM2G176737 disrupted colonization by R. irregularis in rice and maize, respectively.
Figure 2: Rice NOPE1 mediates GlcNAc transport in C. albicans.
Figure 3: NOPE1 mediates GlcNAc transport in rice and Arabidopsis.
Figure 4: R. irregularis transcriptional response to root exudates from rice wild-type and Osnope1 mutant plants.

Similar content being viewed by others

References

  1. Nadal, M. & Paszkowski, U. Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 16, 473–479 (2013).

    Article  CAS  Google Scholar 

  2. Zipfel, C. & Oldroyd, G. E. Plant signalling in symbiosis and immunity. Nature 543, 328–336 (2017).

    Article  CAS  Google Scholar 

  3. Gutjahr, C. & Parniske, M. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 29, 593–617 (2013).

    Article  CAS  Google Scholar 

  4. Miyata, K. et al. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55, 1864–1872 (2014).

    Article  CAS  Google Scholar 

  5. Zhang, X. et al. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J. 81, 258–267 (2015).

    Article  CAS  Google Scholar 

  6. Gutjahr, C. et al. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350, 1521–1524 (2015).

    Article  CAS  Google Scholar 

  7. Bécard, G., Douds, D. D. & Pfeffer, P. E. Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl. Environ. Microbiol. 58, 821–825 (1992).

    PubMed  PubMed Central  Google Scholar 

  8. Nagahashi, G. & Douds, D. D., Jr. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol. 115, 351–358 (2011).

    Article  CAS  Google Scholar 

  9. Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005).

    Article  CAS  Google Scholar 

  10. Besserer, A., Becard, G., Jauneau, A., Roux, C. & Sejalon-Delmas, N. GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus gigaspora rosea by boosting its energy metabolism. Plant Physiol. 148, 402–413 (2008).

    Article  CAS  Google Scholar 

  11. Besserer, A. et al. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4, e226 (2006).

    Article  Google Scholar 

  12. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Article  CAS  Google Scholar 

  13. Bécard, G., Taylor, L., Jr, D. D., Pfeffer, P. & Doner, L. Flavonoids are not necessary plant signals in arbuscular mycorrhizal symbiosis. Mol. Plant Microbe In. 8, 252–258 (1995).

    Article  Google Scholar 

  14. Wang, E. et al. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22, 2242–2246 (2012).

    Article  CAS  Google Scholar 

  15. Wewer, V., Brands, M. & Dormann, P. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. Plant J. 79, 398–412 (2014).

    Article  CAS  Google Scholar 

  16. Paszkowski, U., Jakovleva, L. & Boller, T. Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J. 47, 165–173 (2006).

    Article  CAS  Google Scholar 

  17. Alvarez, F. J. & Konopka, J. B. Identification of an N-acetylglucosamine transporter that mediates hyphal induction in candida albicans. Mol. Biol. Cell 18, 965–975 (2007).

    Article  CAS  Google Scholar 

  18. Naseem, S. & Konopka, J. B. N-acetylglucosamine regulates virulence properties in microbial pathogens. PLoS Pathog. 11, e1004947 (2015).

    Article  Google Scholar 

  19. Jeong, D. H. et al. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123–132 (2006).

    Article  CAS  Google Scholar 

  20. Güimil, S. et al. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl Acad. Sci. USA 102, 8066–8070 (2005).

    Article  Google Scholar 

  21. Gutjahr, C. et al. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20, 2989–3005 (2008).

    Article  CAS  Google Scholar 

  22. Marcel, S., Sawers, R., Oakeley, E., Angliker, H. & Paszkowski, U. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22, 3177–3187 (2010).

    Article  CAS  Google Scholar 

  23. Ahern, K. R. et al. Regional mutagenesis using Dissociation in maize. Methods 49, 248–254 (2009).

    Article  CAS  Google Scholar 

  24. Vollbrecht, E. et al. Genome-wide distribution of transposed Dissociation elements in maize. Plant Cell 22, 1667–1685 (2010).

    Article  CAS  Google Scholar 

  25. Paszkowski, U., Kroken, S., Roux, C. & Briggs, S. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl Acad. Sci. USA 99, 13324–13329 (2002).

    Article  CAS  Google Scholar 

  26. Nagy, R. et al. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol. 8, 186–197 (2006).

    Article  CAS  Google Scholar 

  27. Winter, D. et al. An ‘Electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718 (2007).

    Article  Google Scholar 

  28. Konopka, J. B. N-acetylglucosamine (GlcNAc) functions in cell signaling. Scientifica (Cairo) 2012 (2012).

  29. Whiteway, M. & Oberholzer, U. Candida morphogenesis and host-pathogen interactions. Curr. Opin. Microbiol. 7, 350–357 (2004).

    Article  CAS  Google Scholar 

  30. Simonetti, N., Strippoli, V. & Cassone, A. Yeast-mycelial conversion induced by N-acetyl-D-glucosamine in candida albicans. Nature 250, 344–346 (1974).

    Article  CAS  Google Scholar 

  31. Naseem, S., Gunasekera, A., Araya, E. & Konopka, J. B. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism. J. Biol. Chem. 286, 28671–28680 (2011).

    Article  CAS  Google Scholar 

  32. Yamada, K. et al. Monosaccharide absorption activity of Arabidopsis roots depends on expression profiles of transporter genes under high salinity conditions. J. Biol. Chem. 286, 43577–43586 (2011).

    Article  CAS  Google Scholar 

  33. Kobae, Y. et al. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. Mycorrhiza 25, 411–417 (2015).

    Article  CAS  Google Scholar 

  34. Gadkar, V. et al. Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiol. Lett. 223, 193–198 (2003).

    Article  CAS  Google Scholar 

  35. Vanholme, B. et al. Accumulation of N-acetylglucosamine oligomers in the plant cell wall affects plant architecture in a dose-dependent and conditional manner. Plant Physiol. 165, 290–308 (2014).

    Article  CAS  Google Scholar 

  36. Jiang, H. et al. A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice. Plant Physiol. 138, 232–242 (2005).

    Article  CAS  Google Scholar 

  37. Gilmore, S. A., Naseem, S., Konopka, J. B. & Sil, A. N-acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. PLoS Genetics 9, e1003799 (2013).

    Article  CAS  Google Scholar 

  38. Boulanger, A. et al. The plant pathogen Xanthomonas campestris pv. campestris exploits N-acetylglucosamine during infection. mBio 5, e01527–14 (2014).

    Article  Google Scholar 

  39. Killiny, N., Prado, S. S. & Almeida, R. P. Chitin utilization by the insect-transmitted bacterium xylella fastidiosa. Appl. Environ. Microbiol. 76, 6134–6140 (2010).

    Article  CAS  Google Scholar 

  40. Pan, M., Schwartzman, J. A., Dunn, A. K., Lu, Z. & Ruby, E. G. A single host-derived glycan impacts key regulatory nodes of symbiont metabolism in a coevolved mutualism. mBio 6, e00811 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank J. Gheyselinck and A. Bates for their technical assistance. We are grateful to J. Arbuckle (DuPont/Pioneer) for helping with mapping the maize nope1 mutation and S. Brockington for guidance with advanced BLAST searches. Research in the U.P. laboratories was supported by the Swiss National Science Foundation grants 3100A0-104132, PP00A-110874, PP00P3-130704 and by the Gatsby Charitable Foundation grant RG60824. S.N. and J.B.K. were supported by a grant from the National Institutes of Health (R01GM116048).

Author information

Authors and Affiliations

Authors

Contributions

M.N., R.S., N.G., E.M., J.B.K., T.P.B. and U.P. designed the experiments. M.N., R.S., S.N., B.B., C.K., A.S., G.A., K.R.A., A.R., C.G. and C.R., performed the experiments. C.R. performed bioinformatics and statistical analyses of the RNAseq data. M.N., R.S., C.R., E.M., J.B.K. and U.P. wrote the manuscript.

Corresponding author

Correspondence to Uta Paszkowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Supplementary References, Supplementary Figures 1–14, Supplementary Tables 1–5. (PDF 1934 kb)

Supplementary Data 1

Supplementary Dataset 1 (XLSX 2667 kb)

Supplementary Data 2

Supplementary Dataset 2 (XLSX 1442 kb)

Supplementary Data 3

Supplementary Dataset 3 (XLSX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadal, M., Sawers, R., Naseem, S. et al. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants 3, 17073 (2017). https://doi.org/10.1038/nplants.2017.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.73

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing