Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamical observations of self-stabilizing stationary light

Abstract

The precise control of atom–light interactions is vital to many quantum technologies. For instance, atomic systems can be used to slow and store light, acting as a quantum memory. Optical storage can be achieved via stopped light, where no optical energy continues to exist in the atomic system, or as stationary light, where some optical energy remains present during storage. Here, we demonstrate a form of self-stabilizing stationary light. From any initial state, our atom–light system evolves to a stable configuration that may contain bright optical excitations trapped within the atomic ensemble. This phenomenon is verified experimentally in a cloud of cold Rb87 atoms. The spinwave in our atomic cloud is imaged from the side, allowing direct comparison with theoretical predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The simplified level scheme and theoretical predictions.
Figure 2: The experimental schematic for the SL pulse generation in an ensemble of cold 87Rb atoms.
Figure 3: Stationary light results.

Similar content being viewed by others

References

  1. Hammerer, K. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    Article  ADS  Google Scholar 

  2. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  3. Sangouard, N., Simon, C., De Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  4. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

    Article  ADS  Google Scholar 

  5. Fleischhauer, M., Imamoglu, A. & Marangos, J. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 634–673 (2005).

    Article  ADS  Google Scholar 

  6. Feizpour, A., Hallaji, M., Dmochowski, G. & Steinberg, A. M. Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11, 905–909 (2015).

    Article  Google Scholar 

  7. Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    Article  ADS  Google Scholar 

  8. Chen, Y.-F., Wang, C.-Y., Wang, S.-H. & Yu, I. A. Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96, 043603 (2006).

    Article  ADS  Google Scholar 

  9. Shiau, B.-W., Wu, M.-C., Lin, C.-C. & Chen, Y.-C. Low-light-level cross-phase modulation with double slow light pulses. Phys. Rev. Lett. 106, 193006 (2011).

    Article  ADS  Google Scholar 

  10. André, A. & Lukin, M. Manipulating light pulses via dynamically controlled photonic band gap. Phys. Rev. Lett. 89, 143602 (2002).

    Article  ADS  Google Scholar 

  11. Bajcsy, M., Zibrov, A. S. & Lukin, M. D. Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003).

    Article  ADS  Google Scholar 

  12. Lin, Y.-W. et al. Stationary light pulses in cold atomic media and without Bragg gratings. Phys. Rev. Lett. 102, 213601 (2009).

    Article  ADS  Google Scholar 

  13. André, A., Bajcsy, M., Zibrov, A. & Lukin, M. Nonlinear optics with stationary pulses of light. Phys. Rev. Lett. 94, 063902 (2005).

    Article  ADS  Google Scholar 

  14. Moiseev, S. & Ham, B. Quantum manipulation of two-color stationary light: quantum wavelength conversion. Phys. Rev. A 73, 033812 (2006).

    Article  ADS  Google Scholar 

  15. Moiseev, S. A. & Ham, B. S. Quantum control and manipulation of multi-color light fields. Opt. Spectrosc. 103, 210–218 (2007).

    Article  ADS  Google Scholar 

  16. Zimmer, F. E., André, A., Lukin, M. D. & Fleischhauer, M. Coherent control of stationary light pulses. Opt. Commun. 264, 441–453 (2006).

    Article  ADS  Google Scholar 

  17. Hansen, K. & Mølmer, K. Stationary light pulses in ultracold atomic gases. Phys. Rev. A 75, 065804 (2007).

    Article  ADS  Google Scholar 

  18. Wu, J.-H., Artoni, M. & La Rocca, G. C. Decay of stationary light pulses in ultracold atoms. Phys. Rev. A 81, 033822 (2010).

    Article  ADS  Google Scholar 

  19. Peters, T. et al. Formation of stationary light in a medium of nonstationary atoms. Phys. Rev. A 85, 023838 (2012).

    Article  ADS  Google Scholar 

  20. Bao, Q.-Q. et al. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms. Phys. Rev. A 84, 063812 (2011).

    Article  ADS  Google Scholar 

  21. Hansen, K. & Mølmer, K. Trapping of light pulses in ensembles of stationary Λ atoms. Phys. Rev. A 75, 053802 (2007).

    Article  ADS  Google Scholar 

  22. Moiseev, S. A., Sidorova, A. I. & Ham, B. S. Stationary and quasistationary light pulses in three-level cold atomic systems. Phys. Rev. A 89, 043802 (2014).

    Article  ADS  Google Scholar 

  23. Wu, J.-H., Artoni, M. & La Rocca, G. C. Controlling the photonic band structure of optically driven cold atoms. J. Opt. Soc. Am. B 25, 1840–1849 (2008).

    Article  ADS  Google Scholar 

  24. Wu, J.-H., Artoni, M. & La Rocca, G. C. Stationary light pulses in cold thermal atomic clouds. Phys. Rev. A 82, 013807 (2010).

    Article  ADS  Google Scholar 

  25. Zhang, X.-J. et al. Stationary light pulse in solids with long-lived spin coherence. Phys. Rev. A 83, 063804 (2011).

    Article  ADS  Google Scholar 

  26. Zhang, Y. et al. Efficient generation and control of robust stationary light signals in a double-Λ system of cold atoms. Phys. Lett. A 376, 656–661 (2012).

    Article  ADS  Google Scholar 

  27. Zhang, Y., Bao, Q.-Q., Ba, N., Cui, C.-L. & Wu, J.-H. Coherent generation and efficient manipulation of dual-channel robust stationary light pulses in ultracold atoms. J. Opt. Soc. Am. B 30, 2333–2339 (2013).

    Article  ADS  Google Scholar 

  28. Zhang, Y. et al. Phase control of stationary light pulses due to a weak microwave coupling. Opt. Commun. 343, 183–187 (2015).

    Article  ADS  Google Scholar 

  29. Chen, Y.-H. et al. Demonstration of the interaction between two stopped light pulses. Phys. Rev. Lett. 108, 173603 (2012).

    Article  ADS  Google Scholar 

  30. Maichen, W., Gaggl, R., Korsunsky, E. & Windholz, L. Observation of phase-dependent coherent population trapping in optically closed atomic systems. Euro. Phys. Lett. 31, 189–194 (1995).

    Article  ADS  Google Scholar 

  31. Zimmer, F. E., Otterbach, J., Unanyan, R. G., Shore, B. W. & Fleischhauer, M. Dark-state polaritons for multicomponent and stationary light fields. Phys. Rev. A 77, 063823 (2008).

    Article  ADS  Google Scholar 

  32. Cho, Y.-W. et al. Highly efficient optical quantum memory with long coherence time in cold atoms. Optica 3, 100–107 (2016).

    Article  ADS  Google Scholar 

  33. Hosseini, M., Sparkes, B. M., Campbell, G. T., Lam, P. K. & Buchler, B. C. Storage and manipulation of light using a Raman gradient-echo process. J. Phys. B 45, 124004 (2012).

    Article  ADS  Google Scholar 

  34. Buchler, B. C., Hosseini, M., Hetet, G., Sparkes, B. M. & Lam, P. K. Precision spectral manipulation of optical pulses using a coherent photon echo memory. Opt. Lett. 35, 1091–1093 (2010).

    Article  ADS  Google Scholar 

  35. Sparkes, B. M. et al. Precision spectral manipulation: a demonstration using a coherent optical memory. Phys. Rev. X 2, 021011 (2012).

    Google Scholar 

  36. Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photon. 7, 138–141 (2013).

    Article  ADS  Google Scholar 

  37. Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H. & Edamatsu, K. Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photon. 3, 95–98 (2009).

    Article  ADS  Google Scholar 

  38. Spillane, S. M. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys. Rev. Lett. 100, 233602 (2008).

    Article  ADS  Google Scholar 

  39. Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    Article  ADS  Google Scholar 

  40. Beck, K. M., Hosseini, M., Duan, Y. & Vuleti, V. Large conditional single-photon cross-phase modulation. Proc. Natl Acad. Sci. 113, 9740–9744 (2016).

    Article  ADS  Google Scholar 

  41. Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nature 8, 965–970 (2014).

    Google Scholar 

  42. Lukin, M. & Imamoğlu, A. Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84, 1419–1422 (2000).

    Article  ADS  Google Scholar 

  43. Wang, Z.-B., Marzlin, K.-P. & Sanders, B. C. Large cross-phase modulation between slow copropagating weak pulses in 87Rb. Phys. Rev. Lett. 97, 063901 (2006).

    Article  ADS  Google Scholar 

  44. Feizpour, A., Dmochowski, G. & Steinberg, A. M. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium. Phys. Rev. A 93, 013834 (2016).

    Article  ADS  Google Scholar 

  45. Shapiro, J. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).

    Article  ADS  Google Scholar 

  46. Gea-Banacloche, J. Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010).

    Article  ADS  Google Scholar 

  47. Ahlefeldt, R. L., Manson, N. B. & Sellars, M. J. Optical lifetime and linewidth studies of the 7F0 → 5D0 transition in EuCl3 6H2O: a potential material for quantum memory applications. J. Lumin. 133, 152–156 (2013).

    Article  Google Scholar 

  48. Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    Article  ADS  Google Scholar 

  49. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  Google Scholar 

  50. Zhang, R., Garner, S. R. & Vestergaard Hau, L. Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose–Einstein condensates. Phys. Rev. Lett. 103, 2–5 (2009).

    Google Scholar 

Download references

Acknowledgements

We thank A. Sørensen and J. Ott for helpful discussions regarding the treatment of multiple control fields. Our work was funded by the Australian Research Council (ARC) (CE110001027, FL150100019) and Y.-W.C. was supported by the National Research Foundation of Korea (NRF) (2014R1A6A3A03056704).

Author information

Authors and Affiliations

Authors

Contributions

The theory in this paper was developed by J.L.E., G.T.C., Y.-W.C., P.V.-G., D.B.H. and O.P. The experiment was designed and carried out by J.L.E., G.T.C., Y.-W.C. and N.P.R. Results were analysed by J.L.E., G.T.C., Y.-W.C. and B.C.B. The paper was written by B.C.B., G.T.C., J.L.E., P.V.-G. and P.K.L.

Corresponding author

Correspondence to B. C. Buchler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everett, J., Campbell, G., Cho, YW. et al. Dynamical observations of self-stabilizing stationary light. Nature Phys 13, 68–73 (2017). https://doi.org/10.1038/nphys3901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing