Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The age structure of the Milky Way’s halo

Abstract

We present a new, high-resolution chronographic (age) map of the Milky Way’s halo, based on the inferred ages of 130,000 field blue horizontal-branch (BHB) stars with photometry from the Sloan Digital Sky Survey. Our map exhibits a strong central concentration of BHB stars with ages greater than 12 Gyr, extending up to 15 kpc from the Galactic Centre (reaching close to the solar vicinity), and a decrease in the mean ages of field stars with distance by 1–1.5 Gyr out to 45–50 kpc, along with an apparent increase of the dispersion of stellar ages, and numerous known (and previously unknown) resolved over-densities and debris streams, including the Sagittarius Stream. These results agree with expectations from modern lambda cold dark matter cosmological simulations, and support the existence of a dual (inner/outer) halo system, punctuated by the presence of over-densities and debris streams that have not yet completely phase-space mixed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronographic map for photometrically selected BHB stars from the SDSS.
Figure 2: Chronographic map in the region of the southern (leading/trailing) arm of the Sagittarius Stream.
Figure 3: Colour (age) distribution of accepted pixels (containing at least 10 stars) for different ranges of the vertical distance, Z.
Figure 4: Colour (age) gradient in the vertical distance and in the radial distance directions.

Similar content being viewed by others

References

  1. York, D. G. et al. The Sloan Digital Sky Survey: technical summary. Astron. J. 120, 1579–1587 (2000).

    Article  ADS  Google Scholar 

  2. Steinmetz, M. et al. The Radial Velocity Experiment (RAVE): first data release. Astron. J. 132, 1645–1668 (2006).

    Article  ADS  Google Scholar 

  3. Gilmore, G. et al. The Gaia-ESO public spectroscopic survey. Messenger 147, 25–31 (2012).

    ADS  Google Scholar 

  4. Beers, T. C., Preston, G. V. & Shectman, S. A. A search for stars of very low metal abundance. I. Astron. J. 90, 2089–2102 (1985).

    Article  ADS  Google Scholar 

  5. Beers, T. C., Preston, G. W. & Shectman, S. A. A search for stars of very low metal abundance. II. Astron. J. 103, 1987–2034 (1992).

    Article  ADS  Google Scholar 

  6. Christlieb, N. Finding the most metal-poor stars of the galactic halo with the Hamburg/ESO objective-prism survey. Rev. Mod. Astron. 16, 191–206 (2003).

    ADS  Google Scholar 

  7. Zoccali, M. et al. Age and metallicity distribution of the Galactic bulge from extensive optical and near-IR stellar photometry. Astron. Astrophys. 399, 931–956 (2003).

    Article  ADS  Google Scholar 

  8. Soderblom, D. R. The ages of stars. Annu. Rev. Astron. Astrophys. 48, 581–629 (2010).

    Article  ADS  Google Scholar 

  9. Searle, L. & Zinn, R. Compositions of halo clusters and the formation of the galactic halo. Astrophys. J. 225, 357–379 (1978).

    Article  ADS  Google Scholar 

  10. Eggen, O. J., Lynden-Bell, D. & Sandage, A. R. Evidence from the motions of old stars that the Galaxy collapsed. Astrophys. J. 136, 748–766 (1962).

    Article  ADS  Google Scholar 

  11. Lee, Y. W., Demarque, P. & Zinn, R. The horizontal-branch stars in globular clusters. II: the second parameter phenomenon. Astrophys. J. 423, 248–265 (1994).

    Article  ADS  Google Scholar 

  12. Leaman, R., VanderBerg, D. A. & Mendel, J. T. The bifurcated age-metallicity relation of Milky Way globular clusters and its implications for the accretion history of the galaxy. Mon. Not. R. Astron. Soc. 436, 122–135 (2013).

    Article  ADS  Google Scholar 

  13. Stetson, P. B. et al. Ages for globular cluster in the outer galactic halo: the second-parameter clusters Palomar 3, Palomar 4, and Eridanus. Astrophys. J. 117, 247–263 (1999).

    Google Scholar 

  14. Dotter, A. et al. The ACS survey of galactic globular clusters. IX. Horizontal branch morphology and the second parameter phenomenon. Astrophys. J. 708, 698–716 (2010).

    Article  ADS  Google Scholar 

  15. Ivezic, Z., Beers, T. C. & Juric, M. Galactic stellar populations in the era of the Sloan Digital Sky Survey and other large surveys. Annu. Rev. Astron. Astrophys. 51, 251–304 (2012).

    Article  ADS  Google Scholar 

  16. Majewski, S. R., Skrutskie, M. F., Weinberg, M. D. & Ostheimer, J. C. A Two Micron All Sky Survey view of the Sagittarius dwarf galaxy. I. Morphology of the Sagittarius core and tidal arms. Astrophys. J. 599, 1082–1115 (2003).

    Article  ADS  Google Scholar 

  17. Grillmair, C. J., Hetherington, L., Carlberg, R. G. & Willman, B. An orphan no longer? Detection of the Southern Orphan Stream and a candidate progenitor. Astrophys. J. 812, L26 (2015).

    Article  ADS  Google Scholar 

  18. Janesh, W. et al. The SEGUE K Giant Survey. III. Quantifying galactic halo substructure. Astrophys. J. 816, 80–99 (2016).

    Article  ADS  Google Scholar 

  19. Preston, G. W., Shectman, S. A. & Beers, T. C. Detection of a galactic color gradient for blue horizontal-branch stars of the halo field and implications for the halo age and density distributions. Astrophys. J. 375, 121–147 (1991).

    Article  ADS  Google Scholar 

  20. Cassisi, S., Castellani, M., Caputo, F. & Castellani, V. RR Lyrae variables in galactic globular clusters. IV. Synthetic HB and RR Lyrae predictions. Astron. Astrophys. 426, 641–650 (2004).

    Article  ADS  Google Scholar 

  21. Aihara, H. et al. The eighth data release of the Sloan Digital Sky Survey: first data from SDSS-III. Astrophys. J. Suppl. Ser. 193, 29–46 (2011).

    Article  ADS  Google Scholar 

  22. Santucci, R. M. et al. Chronography of the Milky Way’s halo system with field blue horizontal-branch stars. Astrophys. J. 813, L16 (2015b).

    Article  ADS  Google Scholar 

  23. Bond, H. E., Nelan, E. P., VandenBerg, D. A., Schaefer, G. H. & Harmer, D. HD 140283: a star in the Solar Neighborhood that formed shortly after the Big Bang. Astrophys. J. 765, L12 (2013).

    Article  ADS  Google Scholar 

  24. VandenBerg, D. A., Bergbusch, P. A., Ferguson, J. W. & Edvardsson, B. Isochrones for old (>5 Gyr) stars and stellar populations. I. Models for −2.4 ≤ [Fe/H] ≤ +0.6, 0.25 ≤ Y ≤ 0.33, and −0.4 ≤ [α/Fe] ≤ +0.4. Astrophys. J. 794, 72–95 (2014).

    Article  ADS  Google Scholar 

  25. VandenBerg, D. A., Denissenkov, P. A. & Catelan, M. Constraints of the distance moduli, helium and metal abundances, and ages of globular clusters from their RR-Lyrae and non-variable horizontal-branch stars. I, M3, M15, and M92. Astrophys. J. 827, 2–29 (2016).

    Article  ADS  Google Scholar 

  26. Huxor, A. P. & Grebel, E. K. Tracing the tidal streams of the Sagittarius dSph, and halo Milky Way features, with carbon-rich long-period variables. Mon. Not. R. Astron. Soc. 453, 2653–2681 (2015).

    ADS  Google Scholar 

  27. Law, D. & Majewski, S. Assessing the Milky Way satellites associated with the Sagittarius dwarf spheroidal galaxy. Astrophys. J. 718, 1128–1150 (2010).

    Article  ADS  Google Scholar 

  28. De Boer, T. J. L., Belokurov, V. & Koposov, S. The star formation history of the Sagittarius stream. Mon. Not. R. Astron. Soc. 451, 3489–3503 (2015).

    Article  ADS  Google Scholar 

  29. Juric, M. et al. The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864–914 (2008).

    Article  ADS  Google Scholar 

  30. Jerjen, H. et al. Main-sequence star populations in the Virgo overdensity region. Astrophys. J. 769, 14–25 (2013).

    Article  ADS  Google Scholar 

  31. An, D. et al. A photometric metallicity estimate of the Virgo stellar overdensity. Astrophys. J. 707, L64 (2009).

    Article  ADS  Google Scholar 

  32. Duffau, S., Vivas, A. K., Zinn, R., Méndez, R. A. & Ruiz, M. T. A comprehensive view of the Virgo stellar stream. Astron. Astrophys. 566, 118–134 (2014).

    Article  ADS  Google Scholar 

  33. Grillmair, C. J. Four new stellar debris streams in the galactic halo. Astrophys. J. 693, 1118–1127 (2009).

    Article  ADS  Google Scholar 

  34. Grillmair, C. J. & Carlin, J. L. Tidal Streams in the Local Group and Beyond Vol. 420, 87 (Springer International Publishing Switzerland, 2016).

    Book  Google Scholar 

  35. Grillmair, C. J. Detection of a 60°-long dwarf galaxy debris stream. Astrophys. J. 645, L37–L40 (2006).

    Article  ADS  Google Scholar 

  36. Newberg, H. J., Yanny, B. & Willet, B. A. Discovery of a new, polar-orbiting debris stream in the Milky Way stellar halo. Astrophys. J. 700, L61–L64.

  37. Yam, W. et al. Update on the Cetus polar stream and its progenitors. Astrophys. J. 776, 133–149 (2013).

    Article  ADS  Google Scholar 

  38. Belokurov, V. et al. The Hercules-Aquila cloud. Astrophys. J. 657, L89–L92 (2007).

    Article  ADS  Google Scholar 

  39. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991).

    Article  ADS  Google Scholar 

  40. Zolotov, A. et al. The dual origin of stellar halos. Astrophys. J. 702, 1058–1067 (2009).

    Article  ADS  Google Scholar 

  41. Tumlinson, J. Chemical evolution in hierarchical models of cosmic structure. II. The formation of the Milky Way stellar halo and the distribution of the oldest stars. Astrophys. J. 708, 1398–1418 (2010).

    Article  ADS  Google Scholar 

  42. Tissera, P. B., White, S. D. M. & Scannapieco, C. Chemical signatures of formation processes in the stellar populations of simulated galaxies. Mon. Not. R. Astron. Soc. 420, 255–270 (2012).

    Article  ADS  Google Scholar 

  43. Tissera, P. B., Scannapieco, C., Beers, T. C. & Carollo, D. Stellar haloes of simulated Milky-Way-like galaxies: chemical and kinematic properties. Mon. Not. R. Astron. Soc. 432, 3391–3400 (2013).

    Article  ADS  Google Scholar 

  44. Tissera, P. B., Beers, T. C., Carollo, D. & Scannapieco, C. Stellar haloes in Milky Way mass galaxies: from the inner to the outer haloes. Mon. Not. R. Astron. Soc. 439, 3128–3138 (2014).

    Article  ADS  Google Scholar 

  45. Johnston, K. V. et al. Tracing galaxy formation with stellar halos. II. Relating substructure in phase and abundance space to accretion histories. Astrophys. J. 689, 936–957 (2008).

    Article  ADS  Google Scholar 

  46. Font, A. S. et al. Cosmological simulations of the formation of the stellar haloes around disc galaxies. Mon. Not. R. Astron. Soc. 416, 2802–2820 (2011).

    Article  ADS  Google Scholar 

  47. McCarthy, I. G. et al. Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 420, 2245–2262 (2012).

    Article  ADS  Google Scholar 

  48. Carollo, D. et al. Two stellar components in the halo of the Milky Way. Nature 450, 1020–1025 (2007).

    Article  ADS  Google Scholar 

  49. Carollo, D. et al. Structure and kinematics of the stellar halos and thick disks of the Milky Way based on calibration stars from Sloan Digital Sky Survey DR7. Astrophys. J. 712, 692–727 (2010).

    Article  ADS  Google Scholar 

  50. de Jong, J. et al. Mapping the stellar structure of the Milky Way thick disk and halo using SEGUE photometry. Astrophys. J. 714, 663–674 (2010).

    Article  ADS  Google Scholar 

  51. Kinman, T. D., Cacciari, C., Bragaglia, A., Smart, R. & Spagna, A. The kinematic properties of BHB and RR Lyrae stars towards the Anticentre and the North Galactic Pole: the transition between the inner and the outer halo. Mon. Not. R. Astron. Soc. 422, 2116–2144 (2012).

    Article  ADS  Google Scholar 

  52. Chen, Y. Q. et al. Red giant stars from Sloan Digital Sky Survey. I. The general field. Astrophys. J. 795, 52–65 (2014).

    Article  ADS  Google Scholar 

  53. An, D. et al. The fractions of inner- and outer-halo stars in the local volume. Astrophys. J. 813, L28 (2015).

    Article  ADS  Google Scholar 

  54. Gilbert, K. M. et al. Global properties of M31’s stellar halo from the SPLASH survey. II. Metallicity profile. Astrophys. J. 796, 76–96 (2014).

    Article  ADS  Google Scholar 

  55. Monachesi, A. et al. The GHOSTS survey. II. The diversity of halo color and metallicity profiles of massive disk galaxies. Mon. Not. R. Astron. Soc. 457, 1419–1446 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.C., T.C.B., V.M.P. and G.L. acknowledge partial support for this work from grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation. Y.S.L. acknowledges support provided by the National Research Foundation of Korea to the Center for Galaxy Evolution Research (No. 2010-0027910) and partial support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A02036658). R.M.S. and S.R. acknowledge CAPES (PROEX), CNPq, PRPG/USP, FAPESP and INCT-A funding. P.D. acknowledges partial funding from a Natural Sciences and Engineering Research Council of Canada grant to D. VandenBerg. P.B.T. acknowledges partial support from PICT-959-2011, Fondecyt-113350 and MUN-UNAB projects.

Author information

Authors and Affiliations

Authors

Contributions

D.C., T.C.B., V.M.P., R.M.S., G.L. and Y.S.L. performed the analysis and interpretations of the observations. The chronographic maps were assembled on the basis of graphical techniques developed by V.M.P. P.D. carried out modelling of the mapping of BHB colours to age estimates. D.C., T.C.B., P.B.T. and J.T. carried out comparisons of the results with expectations from numerical simulations of galaxy formation. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to D. Carollo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carollo, D., Beers, T., Placco, V. et al. The age structure of the Milky Way’s halo. Nature Phys 12, 1170–1176 (2016). https://doi.org/10.1038/nphys3874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3874

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing