Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supercurrent in a room-temperature Bose–Einstein magnon condensate

Abstract

A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnon spectrum.
Figure 2: Experimental set-up.
Figure 3: Temperature-dependent temporal dynamics of the magnon BEC.
Figure 4: Temporal dynamics of the magnon BEC under local laser heating.
Figure 5: Theoretically calculated magnon dynamics in a thermal gradient.

Similar content being viewed by others

References

  1. Matthews, M. R. et al. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999).

    Article  ADS  Google Scholar 

  2. Raman, C. et al. Evidence for a critical velocity in a Bose–Einstein condensed gas. Phys. Rev. Lett. 83, 2502–2505 (1999).

    Article  ADS  Google Scholar 

  3. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  4. Page, D., Lattimer, J. M., Prakash, M. & Steiner, A. W. in Novel Superfluids Vol. 2 (eds Bennemann, K. H. & Ketterson, J. B.) 505–579 (Oxford Univ. Press, 2014).

    Book  Google Scholar 

  5. Borovik-Romanov, A. S., Bun’kov, Yu. M., Dmitriev, V. V. & Mukharskiı̆, Yu. M. Long-lived induction signal in superfluid 3He-B. JETP Lett. 40, 1033–1037 (1984).

    ADS  Google Scholar 

  6. Butov, L. V. et al. Stimulated scattering of indirect excitons in coupled quantum wells: signature of a degenerate Bose-gas of excitons. Phys. Rev. Lett. 86, 5608–5611 (2001).

    Article  ADS  Google Scholar 

  7. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  8. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  9. Bunkov, Yu. M. et al. High-Tc spin superfluidity in antiferromagnets. Phys. Rev. Lett. 108, 177002 (2012).

    Article  ADS  Google Scholar 

  10. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  ADS  Google Scholar 

  11. Einstein, A. Quantentheorie des einatomigen idealen Gases. Sitz.ber. Preuss. Akad. Wiss. Phys. 22, 261–267 (1924).

    Google Scholar 

  12. Einstein, A. Quantentheorie des einatomigen idealen Gases – Zweite Abhandlung. Sitz.ber. Preuss. Akad. Wiss. Phys. 23, 3–14 (1925).

    MATH  Google Scholar 

  13. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  14. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  Google Scholar 

  15. Borovik-Romanov, A. S., Bun’kov, Yu. M., Dmitriev, V. V. & Mukharskiı̆, Yu. M. Observation of phase slippage during the flow of a superfluid spin current in 3He-B. JETP Lett. 45, 124–128 (1987).

    ADS  Google Scholar 

  16. Borovik-Romanov, A. S. et al. Observation of a spin-current analog of the Josephson effect. JETP Lett. 47, 478–482 (1988).

    ADS  Google Scholar 

  17. Bunkov, Yu. M. & Volovik, G. E. Spin vortex in magnon BEC of superfluid 3He-B. Physica C 468, 609–612 (2008).

    Article  ADS  Google Scholar 

  18. Bunkov, Yu. M. Spin superfluidity and coherent spin precession (Fritz London Memorial Prize Lecture). J. Phys. Condens. Matter 21, 164201 (2009).

    Article  ADS  Google Scholar 

  19. Fröhlich, H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402–403 (1968).

    Article  ADS  Google Scholar 

  20. Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    Article  ADS  Google Scholar 

  21. Rodriguez, S. R. K., Feist, J., Verschuuren, M. A., Garcia Vidal, F. J. & Gómez Rivas, J. Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. Phys. Rev. Lett. 111, 166802 (2013).

    Article  ADS  Google Scholar 

  22. Kalafati, Yu. D. & Safonov, V. L. Thermodynamic approach in the theory of paramagnetic resonance of magnons. Sov. Phys. JETP 68, 1162–1167 (1989).

    Google Scholar 

  23. Demokritov, S. O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    Article  ADS  Google Scholar 

  24. Troncoso, R. E. & Núñez, Á. S. Josephson effects in a Bose–Einstein condensate of magnons. Ann. Phys. 346, 182–194 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  25. Nakata, K., van Hoogdalem, K. A., Simon, P. & Loss, D. Josephson and persistent spin currents in Bose–Einstein condensates of magnons. Phys. Rev. B 90, 144419 (2014).

    Article  ADS  Google Scholar 

  26. Nakata, K., Simon, P. & Loss, D. Magnon transport through microwave pumping. Phys. Rev. B 92, 014422 (2015).

    Article  ADS  Google Scholar 

  27. Büttner, O. et al. Linear and nonlinear diffraction of dipolar spin waves in yttrium iron garnet films observed by space- and time-resolved Brillouin light scattering. Phys. Rev. B 61, 11576–11587 (2000).

    Article  ADS  Google Scholar 

  28. Sandweg, C. W. et al. Wide-range wavevector selectivity of magnon gases in Brillouin light scattering spectroscopy. Rev. Sci. Instrum. 81, 073902 (2010).

    Article  ADS  Google Scholar 

  29. Cherepanov, V., Kolokolov, I. & L’vov, V. The saga of YIG: spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. 229, 81–144 (1993).

    Article  ADS  Google Scholar 

  30. Serga, A. A. et al. Bose–Einstein condensation in an ultra-hot gas of pumped magnons. Nature Commun. 5, 3452 (2014).

    Article  ADS  Google Scholar 

  31. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC Press, 1996).

    Google Scholar 

  32. Kreisel, A., Sauli, F., Bartosch, L. & Kopietz, P. Microscopic spin-wave theory for yttrium-iron garnet films. Eur. Phys. J. B 71, 59–68 (2009).

    Article  ADS  Google Scholar 

  33. Kalinikos, B. A., Kostylev, M. P., Kozhus, N. V. & Slavin, A. N. The dipole-exchange spin wave spectrum for anisotropic ferromagnetic films with mixed exchange boundary conditions. J. Phys. Condens. Matter 2, 9861–9877 (1990).

    Article  ADS  Google Scholar 

  34. Serga, A. A. et al. Brillouin light scattering spectroscopy of parametrically excited dipole-exchange magnons. Phys. Rev. B 86, 134403 (2012).

    Article  ADS  Google Scholar 

  35. Neumann, T., Serga, A. A., Vasyuchka, V. I. & Hillebrands, B. Field-induced transition from parallel to perpendicular parametric pumping for a microstrip transducer. Appl. Phys. Lett. 94, 192502 (2009).

    Article  ADS  Google Scholar 

  36. Clausen, P. et al. Stimulated thermalization of a parametrically driven magnon gas as a prerequisite for Bose–Einstein magnon condensation. Phys. Rev. B 91, 220402(R) (2015).

    Article  ADS  Google Scholar 

  37. Bozhko, D. A. et al. Formation of Bose–Einstein magnon condensate via dipolar and exchange thermalization channels. Low Temp. Phys. 41, 1024–1029 (2015).

    Article  Google Scholar 

  38. Nowik-Boltyk, P., Dzyapko, O., Demidov, V. E., Berloff, N. G. & Demokritov, S. O. Spatially non-uniform ground state and quantized vortices in a two-component Bose–Einstein condensate of magnons. Sci. Rep. 2, 482 (2012).

    Article  ADS  Google Scholar 

  39. Autti, S. et al. Self-trapping of magnon Bose–Einstein condensates in the ground state and on excited levels: from harmonic to box confinement. Phys. Rev. Lett. 108, 145303 (2012).

    Article  ADS  Google Scholar 

  40. Li, F., Saslow, W. M. & Pokrovsky, V. L. Phase diagram for magnon condensate in yttrium iron garnet film. Sci. Rep. 3, 1372 (2013).

    Article  ADS  Google Scholar 

  41. L’vov, V. S. Wave Turbulence Under Parametric Excitations (Applications to Magnetics) (Springer, 1994).

    Book  Google Scholar 

  42. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics (Non-Relativistic Theory), Course of Theoretical Physics Vol. 3 (Pergamon Press, 1977).

    Google Scholar 

  43. Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence (Wave Turbulence) (Springer, 1992).

    Book  Google Scholar 

  44. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nature Phys. 11, 453–461 (2015).

    Article  ADS  Google Scholar 

  45. Lindsay, S. M., Anderson, M. W. & Sandercock, J. R. Construction and alignment of a high performance multipass vernier tandem Fabry-Pérot interferometer. Rev. Sci. Instrum. 52, 1478–1486 (1981).

    Article  ADS  Google Scholar 

  46. Mock, R., Hillebrands, B. & Sandercock, R. Construction and performance of a Brillouin scattering set-up using a triple-pass tandem Fabry-Pérot interferometer. J. Phys. E 20, 656–659 (1987).

    Article  ADS  Google Scholar 

  47. Hillebrands, B. Progress in multipass tandem Fabry-Perot interferometry: I. A fully automated, easy to use, self-aligning spectrometer with increased stability and flexibility. Rev. Sci. Instrum. 70, 1589–1598 (1999).

    Article  ADS  Google Scholar 

  48. COMSOL Multiphysics. The Platform for Physics-based Modeling and Simulationhttps://www.comsol.com/comsol-multiphysics

  49. Heat transfer module. Software for General-purpose Modeling of Heat Transfer in Solids and Fluidshttps://www.comsol.com/heat-transfer-module

  50. Schreier, M. et al. Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys. Rev. B 88, 094410 (2013).

    Article  ADS  Google Scholar 

  51. Haynes, W. M., Lide, D. R. & Bruno, T. J. Handbook of Chemistry and Physics (CRC Press, 2005).

    Google Scholar 

  52. COMSOL material library. https://www.comsol.com/material-library

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft (project INST 161/544-3 within the Transregional Collaborative Research Centre SFB/TR 49 ‘Condensed Matter Systems with Variable Many-Body Interactions’ and project VA 735/1-2 within the priority programme SPP 1538 ‘Spin Caloric Transport’), from EU-FET (Grant InSpin 612759) and from the State Fund for Fundamental Research of Ukraine (SFFR) is gratefully acknowledged. D.A.B. is supported by a fellowship of the Graduate School Material Sciences in Mainz (MAINZ) through DFG funding of the Excellence Initiative (GSC-266). We are also indebted to Y. Tserkovnyak, S. Eggert, A. N. Slavin, V. S. Tiberkevich, K. Nakata, D. Loss and V. L. Pokrovsky for fruitful discussions. We also acknowledge I. I. Syvorotka (Scientific Research Company ‘Carat’, Lviv, Ukraine) for supplying us with the YIG film sample.

Author information

Authors and Affiliations

Authors

Contributions

A.A.S. and B.H. contributed to the experimental idea, planned and supervised the project. D.A.B., P.C., V.I.V. and A.A.S. carried out the experiments. D.A.B. and P.C. contributed to the experimental set-up. D.A.B. carried out the numerical analysis. G.A.M., A.P. and V.S.L. developed the theoretical model. F.H. performed temperature simulations. All authors analysed the experimental data and discussed the results.

Corresponding author

Correspondence to Burkard Hillebrands.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhko, D., Serga, A., Clausen, P. et al. Supercurrent in a room-temperature Bose–Einstein magnon condensate. Nature Phys 12, 1057–1062 (2016). https://doi.org/10.1038/nphys3838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing