Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tying quantum knots

Abstract

As topologically stable objects in field theories, knots have been put forward to explain various persistent phenomena in systems ranging from atoms and molecules to cosmic textures in the universe. Recent experiments have reported the observation of knots in different classical contexts. However, no experimental observation of knots has yet been reported in quantum matter. Here we demonstrate the experimental creation and detection of knot solitons in the order parameter of a spinor Bose–Einstein condensate. The observed texture corresponds to a topologically nontrivial element of the third homotopy group and exhibits the celebrated Hopf fibration, which unites many seemingly unrelated physical phenomena. Our work calls for future studies of the stability and dynamics knot solitons in the quantum regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the knot soliton and the method of its creation.
Figure 2: Tying the knot soliton by winding the nematic vector.
Figure 3: Comparison of experiment with theory.
Figure 4: Numerical simulation of the knot creation before expansion.
Figure 5: Linked preimages.
Figure 6: Comparison of experiment with theory for x and y projections.

Similar content being viewed by others

References

  1. Adams, C. C. The Knot Book (W. H. Freeman, 1994).

    MATH  Google Scholar 

  2. Smalyukh, I. I., Lansac, Y., Clark, N. A. & Trivedi, R. P. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids. Nature Mater. 9, 139–145 (2009).

    Article  ADS  Google Scholar 

  3. Tkalec, U., Ravnik, M., Copar, S., Zumer, S. & Musevic, I. Reconfigurable knots and links in chiral nematic colloids. Science 333, 62–65 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  4. Seč, D., Čopar, S. & Žumer, S. Topological zoo of free-standing knots in confined chiral nematic fluids. Nature Commun. 5, 3057 (2014).

    Article  ADS  Google Scholar 

  5. Han, D., Pal, S., Liu, Y. & Yan, H. Folding and cutting DNA into reconfigurable topological nanostructures. Nature Nanotech. 5, 712–717 (2010).

    Article  ADS  Google Scholar 

  6. Thomson, W. On vortex atoms. Proc. R. Soc. Edinburgh VI, 197–206 (1867).

    Google Scholar 

  7. Kleckner, D. & Irvine, W. T. M. Creation and dynamics of knotted vortices. Nature Phys. 9, 253–258 (2013).

    Article  ADS  Google Scholar 

  8. Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Vortex knots in light. New J. Phys. 7, 55 (2005).

    ADS  Google Scholar 

  9. Dennis, M. R., King, R. P., Jack, B., O’Holleran, K. & Padgett, M. J. Isolated optical vortex knots. Nature Phys. 6, 118–121 (2010).

    Article  ADS  Google Scholar 

  10. Barenghi, C. F. Knots and unknots in superfluid turbulence. Milan J. Math. 75, 177–196 (2007).

    Article  MathSciNet  Google Scholar 

  11. Manton, N. & Sutcliffe, P. Topological Solitons (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  12. Hopf, H. Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104, 637–665 (1931).

    Article  MathSciNet  Google Scholar 

  13. Urbantke, H. The Hopf fibration—seven times in physics. J. Geom. Phys. 46, 125–150 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. Moore, J. E., Ran, Y. & Wen, X.-G. Topological surface states in three-dimensional magnetic insulators. Phys. Rev. Lett. 101, 186805 (2008).

    Article  ADS  Google Scholar 

  15. Radu, E. & Volkov, M. S. Stationary ring solitons in field theory—knots and vortons. Phys. Rep. 468, 101–151 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  16. Rañada, A. F. Knotted solutions of the Maxwell equations in vacuum. J. Phys. A 23, L815–L820 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  17. Rañada, A. F. & Trueba, J. L. Ball lightning an electromagnetic knot? Nature 383, 32 (1996).

    Article  ADS  Google Scholar 

  18. Faddeev, L. & Niemi, A. J. Stable knot-like structures in classical field theory. Nature 387, 58–61 (1997).

    Article  ADS  Google Scholar 

  19. Battye, R. A. & Sutcliffe, P. M. Knots as stable soliton solutions in a three-dimensional classical field theory. Phys. Rev. Lett. 81, 4798–4801 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  20. Kawaguchi, Y., Nitta, M. & Ueda, M. Knots in a spinor Bose–Einstein condensate. Phys. Rev. Lett. 100, 180403 (2008).

    Article  ADS  Google Scholar 

  21. Denschlag, J. et al. Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97–101 (2000).

    Article  ADS  Google Scholar 

  22. Burger, S. et al. Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).

    Article  ADS  Google Scholar 

  23. Vinen, W. F. The detection of single quanta of circulation in liquid helium II. Proc. R. Soc. Lond. A 260, 218–236 (1961).

    Article  ADS  Google Scholar 

  24. Matthews, M. R. et al. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999).

    Article  ADS  Google Scholar 

  25. Nakahara, M. Geometry, Topology and Physics (Taylor & Francis Group, 2003).

    MATH  Google Scholar 

  26. Choi, J.-y. et al. Imprinting skyrmion spin textures in spinor Bose–Einstein condensates. New J. Phys. 14, 053013 (2012).

    Article  ADS  Google Scholar 

  27. Ray, M. W., Ruokokoski, E., Tiurev, K., Möttönen, M. & Hall, D. S. Observation of isolated monopoles in a quantum field. Science 348, 544–547 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  28. Ray, M. W., Ruokokoski, E., Kandel, S., Möttönen, M. & Hall, D. S. Observation of Dirac monopoles in a synthetic magnetic field. Nature 505, 657–660 (2014).

    Article  ADS  Google Scholar 

  29. Pietilä, V. & Möttönen, M. Creation of Dirac monopoles in spinor Bose–Einstein condensates. Phys. Rev. Lett. 103, 030401 (2009).

    Article  ADS  Google Scholar 

  30. Hietarinta, J., Jäykkä, J. & Salo, P. Relaxation of twisted vortices in the Faddeev–Skyrme model. Phys. Lett. A 321, 324–329 (2004).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the National Science Foundation (grant PHY-1205822), by the Academy of Finland through its Centres of Excellence Program (grant nos 251748 and 284621) and grants (nos 135794 and 272806), Finnish Doctoral Programme in Computational Sciences, and the Magnus Ehrnrooth Foundation. CSC—IT Center for Science Ltd. (Project No. ay2090) and Aalto Science-IT project are acknowledged for computational resources. We thank N. Johnson for making public his Hopf fibration code, A. Li for assistance with figures, and W. Lee and S. J. Vickery for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.W.R., A.H.G. and D.S.H. developed and conducted the experiments and analysed the data. K.T. and E.R. perfomed the numerical simulations under the guidance of M.M., who provided the initial suggestions for the experiment. M.M. and D.S.H. developed the analytical interpretation of the m = 0 data as preimages. All authors discussed both experimental and theoretical results and commented on the manuscript.

Corresponding author

Correspondence to D. S. Hall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, D., Ray, M., Tiurev, K. et al. Tying quantum knots. Nature Phys 12, 478–483 (2016). https://doi.org/10.1038/nphys3624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3624

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics