Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transmission of torque at the nanoscale

Abstract

In macroscopic mechanical devices, torque is transmitted through gearwheels and clutches. In the construction of devices at the nanoscale, torque and its transmission through soft materials will be a key component. However, this regime is dominated by thermal fluctuations leading to dissipation. Here we demonstrate the principle of torque transmission for a disc-like colloidal assembly exhibiting clutch-like behaviour, driven by 27 particles in optical traps. These are translated on a circular path to form a rotating boundary that transmits torque to additional particles confined to the interior. We investigate this transmission and find that it is determined by solid-like or fluid-like behaviour of the device and a stick–slip mechanism reminiscent of macroscopic gearwheels slipping. The transmission behaviour is predominantly governed by the rotation rate of the boundary and the density of the confined system. We determine the efficiency of our device and thus optimize conditions to maximize power output.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental system.
Figure 2: Controlling rotational behaviour with N and Pe.
Figure 3: Disengaging transmission in situ by altering density in a single simulation with N = 48.
Figure 4: Measuring efficiency in the loaded device.
Figure 5: Structural fluctuations.

Similar content being viewed by others

References

  1. Carnot, S. Réflexions sur la puissance motrice du feu et sur les machine propres à développer cette puissance (Bachelier, 1824).

    MATH  Google Scholar 

  2. Seifert, U. Efficiency of autonomous soft nanomachines at maximum power. Phys. Rev. Lett. 106, 020601 (2011).

    Article  ADS  Google Scholar 

  3. Parmeggiani, A., Jülicher, F., Ajdari, A. & Prost, J. Energy transduction of isothermal ratchets: Generic aspects and specific examples close to and far from equilibrium. Phys. Rev. E 60, 2127–2140 (1999).

    Article  ADS  Google Scholar 

  4. Kolomeisky, A. B. Motor proteins and molecular motors: How to operate machines at the nanoscale. J. Phys. Condens. Matter 25, 463101 (2013).

    Article  ADS  Google Scholar 

  5. Babič, D., Schmitt, C. & Bechinger, C. Colloids as model systems for problems in statistical physics. Chaos 15, 026114 (2005).

    Article  ADS  Google Scholar 

  6. Pesce, G., Volpe, G., Imparato, A., Rusciano, G. & Sasso, A. Influence of rotational force fields on the determination of the work done on a driven Brownian particle. J. Opt. 13, 044006 (2011).

    Article  ADS  Google Scholar 

  7. Blickle, V. & Bechinger, C. Realization of a micrometre-sized stochastic heat engine. Nature Phys. 8, 143–146 (2012).

    Article  ADS  Google Scholar 

  8. Carberry, D. M. et al. Fluctuations and irreversibility: An experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. Phys. Rev. Lett. 92, 140601 (2004).

    Article  ADS  Google Scholar 

  9. Gieseler, J., Quidant, R., Dellago, C. & Novotny, L. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotech. 9, 358–364 (2014).

    Article  ADS  Google Scholar 

  10. Bérut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).

    Article  ADS  Google Scholar 

  11. Klapper, Y., Sinha, N., Ng, W. T. S. & Lubrich, D. A rotational DNA nanomotor driven by an externally controlled electric field. Small 6, 44–47 (2010).

    Article  Google Scholar 

  12. Asavei, T. et al. Optically trapped and driven paddle-wheel. New J. Phys. 15, 063016 (2013).

    Article  ADS  Google Scholar 

  13. Lin, X.-F. et al. A light-driven turbine-like micro-rotor and study on its light-to-mechanical power conversion efficiency. Appl. Phys. Lett. 101, 113901 (2012).

    Article  ADS  Google Scholar 

  14. Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. Appl. Phys. Lett. 78, 249–251 (2001).

    Article  ADS  Google Scholar 

  15. Di Leonardo, R. et al. Bacterial ratchet motors. Proc. Natl Acad. Sci. USA 107, 9541–9545 (2010).

    Article  ADS  Google Scholar 

  16. Xia, H. et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization. Adv. Mater. 22, 3204–3207 (2010).

    Article  Google Scholar 

  17. Fournier-Bidoz, S., Arsenault, A. C., Manners, I. & Ozin, G. A. Synthetic self-propelled nanorotors. Chem. Commun. 2005, 441–443 (2005).

    Article  Google Scholar 

  18. Gibbs, J. G. & Zhao, Y.-P. Design and characterization of rotational multicomponent catalytic nanomotors. Small 5, 2304–2308 (2009).

    Article  Google Scholar 

  19. Whitesides, G. M. & Boncheva, M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl Acad. Sci. USA 99, 4769–4774 (2002).

    Article  ADS  Google Scholar 

  20. Kim, Y., Shah, A. A. & Solomon, M. J. Spatially and temporally reconfigurable assembly of colloid crystals. Nature Commun. 5, 3676 (2014).

    Article  ADS  Google Scholar 

  21. Puigmartí-Luis, J., Saletra, W. J., González, A., Amabilino, D. B. & Pérez-García, L. Bottom-up assembly of a surface-anchored supramolecular rotor enabled using a mixed self-assembled monolayer and pre-complexed components. Chem. Commun. 50, 82–84 (2014).

    Article  Google Scholar 

  22. Ismagilov, R. F., Schwartz, A., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angew. Chem. Int. Ed. 41, 652–654 (2002).

    Article  Google Scholar 

  23. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    Article  Google Scholar 

  24. Kraft, D. J. et al. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc. Natl Acad. Sci. USA 109, 10787–10792 (2012).

    Article  ADS  Google Scholar 

  25. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  ADS  Google Scholar 

  26. Purcell, E. M. Life at low reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Article  ADS  Google Scholar 

  27. Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013).

    Article  ADS  Google Scholar 

  28. Williams, I. et al. The effect of boundary adaptivity on hexagonal ordering and bistability in circularly confined quasi hard discs. J. Chem. Phys. 140, 104907 (2014).

    Article  ADS  Google Scholar 

  29. Williams, I., Oğuz, E. C., Bartlett, P., Löwen, H. & Royall, C. P. Direct measurement of osmotic pressure via adaptive confinement of quasi hard disc colloids. Nature Commun. 4, 3555 (2013).

    Google Scholar 

  30. Phillips, D. B. et al. An optically actuated surface scanning probe. Opt. Express 20, 29679–29693 (2012).

    Article  ADS  Google Scholar 

  31. Phillips, D. B. et al. Force sensing with a shaped dielectric micro-tool. Europhys. Lett. 99, 58004 (2012).

    Article  ADS  Google Scholar 

  32. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).

    Article  ADS  Google Scholar 

  33. Sabass, B. & Seifert, U. Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer. J. Chem. Phys. 136, 064508 (2012).

    Article  ADS  Google Scholar 

  34. Yoshino, H. Replica theory of the rigidity of structural glasses. J. Chem. Phys. 136, 214108 (2012).

    Article  ADS  Google Scholar 

  35. Yim, M. et al. Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14, 43–52 (2007).

    Article  Google Scholar 

  36. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  ADS  Google Scholar 

  37. von Hansen, Y., Hinczewski, M. & Netz, R. R. Hydrodynamic screening near planar boundaries: Effects on semiflexible polymer dynamics. J. Chem. Phys. 134, 235102 (2011).

    Article  ADS  Google Scholar 

  38. Blake, J. R. A note on the image system for a Stokeslet in a no-slip boundary. Proc. Camb. Phil. Soc. 70, 303–310 (1971).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Eggers, M. Heinen and R. Jack for helpful discussions. C.P.R. and I.W. acknowledge the Royal Society and European Research Council (ERC Consolidator Grant NANOPRS, project number 617266). Additionally, I.W. was supported by the Engineering and Physical Sciences Research Council (EPSRC). The work of E.C.O. and H.L. was supported by the ERC Advanced Grant INTERCOCOS (project number 267499). E.C.O. was also supported by the German Research Foundation (DFG) within the Postdoctoral Research Fellowship Program (project number OG 98/1-1).

Author information

Authors and Affiliations

Authors

Contributions

I.W. and C.P.R. conceived the experiments. I.W. built the experimental apparatus and performed the experiments. E.C.O., C.P.R. and H.L. conceived the simulations. E.C.O. carried out the simulations. T.S. performed the theoretical efficiency analysis. All authors contributed to the data analysis and writing of the manuscript.

Corresponding authors

Correspondence to Hartmut Löwen or C. Patrick Royall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 378 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 1581 kb)

Supplementary Movie

Supplementary Movie 2 (AVI 1661 kb)

Supplementary Movie

Supplementary Movie 3 (AVI 4290 kb)

Supplementary Movie

Supplementary Movie 4 (AVI 7511 kb)

Supplementary Movie

Supplementary Movie 5 (AVI 7481 kb)

Supplementary Movie

Supplementary Movie 6 (AVI 7504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, I., Oğuz, E., Speck, T. et al. Transmission of torque at the nanoscale. Nature Phys 12, 98–103 (2016). https://doi.org/10.1038/nphys3490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing