Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal decoherence due to gravitational time dilation

Abstract

The physics of low-energy quantum systems is usually studied without explicit consideration of the background spacetime. Phenomena inherent to quantum theory in curved spacetime, such as Hawking radiation, are typically assumed to be relevant only for extreme physical conditions: at high energies and in strong gravitational fields. Here we consider low-energy quantum mechanics in the presence of gravitational time dilation and show that the latter leads to the decoherence of quantum superpositions. Time dilation induces a universal coupling between the internal degrees of freedom and the centre of mass of a composite particle. The resulting correlations lead to decoherence in the particle position, even without any external environment. We also show that the weak time dilation on Earth is already sufficient to affect micrometre-scale objects. Gravity can therefore account for the emergence of classicality and this effect could in principle be tested in future matter-wave experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gravitational time dilation causes decoherence of composite quantum systems.
Figure 2: A composite particle in superposition will decohere owing to time dilation.
Figure 3: Decoherence due to gravitational time dilation as compared to decoherence due to emission of thermal radiation for sapphire microspheres.

Similar content being viewed by others

References

  1. Colella, R., Overhauser, A. W. & Werner, S. A. Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975).

    Article  ADS  Google Scholar 

  2. Chu, S. Laser manipulation of atoms and particles. Science 253, 861–866 (1991).

    Article  ADS  Google Scholar 

  3. Eibenberger, S., Gerlich, S., Arndt, M., Mayor, M. & Tüxen, J. Matter-wave interference with particles selected from a molecular library with masses exceeding 10,000 amu. Phys. Chem. Chem. Phys. 15, 14696 (2013).

    Article  Google Scholar 

  4. Giulini, D. et al. Decoherence and the Appearance of a Classical World in Quantum Theory (Springer-Verlag, 1996).

    Book  Google Scholar 

  5. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  6. Caldeira, A. O. & Leggett, A. J. Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  7. Joos, E. & Zeh, H. D. The emergence of classical properties through interaction with the environment. Z. Phys. B 59, 223–243 (1985).

    Article  ADS  Google Scholar 

  8. Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A. & Arndt, M. Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004).

    Article  ADS  Google Scholar 

  9. Prokof’ev, N. V. & Stamp, P. C. E. Theory of the spin bath. Rep. Prog. Phys. 63, 669–726 (2000).

    Article  ADS  Google Scholar 

  10. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  ADS  Google Scholar 

  11. Anastopoulos, C. Quantum theory of nonrelativistic particles interacting with gravity. Phys. Rev. D 54, 1600–1605 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  12. Lamine, B., Hervé, R., Lambrecht, A. & Reynaud, S. Ultimate decoherence border for matter-wave interferometry. Phys. Rev. Lett. 96, 050405 (2006).

    Article  ADS  Google Scholar 

  13. Blencowe, M. P. Effective field theory approach to gravitationally induced decoherence. Phys. Rev. Lett. 111, 021302 (2013).

    Article  ADS  Google Scholar 

  14. Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  15. Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174 (1989).

    Article  ADS  Google Scholar 

  16. Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).

    Article  ADS  Google Scholar 

  17. Einstein, A. Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys. 340, 898–908 (1911).

    Article  Google Scholar 

  18. Hafele, J. C. & Keating, R. E. Around-the-world atomic clocks: Predicted relativistic time gains. Science 177, 166–168 (1972).

    Article  ADS  Google Scholar 

  19. Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  Google Scholar 

  20. Zych, M., Costa, F., Pikovski, I. & Brukner, Č. Quantum interferometric visibility as a witness of general relativistic proper time. Nature Commun. 2, 505 (2011).

    Article  ADS  Google Scholar 

  21. Breuer, H-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

    MATH  Google Scholar 

  22. Einstein, A. & Infeld, L. The Evolution of Physics (Simon and Schuster, 1938).

    MATH  Google Scholar 

  23. Hogg, T. & Huberman, B. A. Recurrence phenomena in quantum dynamics. Phys. Rev. Lett. 48, 711–714 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  24. Karolyhazy, F. Gravitation and quantum mechanics of macroscopic objects. Nuovo Cimento 42, 390–402 (1966).

    Article  ADS  Google Scholar 

  25. Zych, M., Costa, F., Pikovski, I., Ralph, T. C. & Brukner, Č. General relativistic effects in quantum interference of photons. Class. Quantum Gravity 29, 224010 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  26. Ralph, T. C., Milburn, G. J. & Downes, T. Gravitationally induced decoherence of optical entanglement. Preprint at http://arxiv.org/abs/quant-ph/0609139 (2006).

  27. Kiesel, N. et al. Cavity cooling of an optically levitated submicron particle. Proc. Natl Acad. Sci. USA 110, 14180–14185 (2013).

    Article  ADS  Google Scholar 

  28. Asenbaum, P., Kuhn, S., Nimmrichter, S., Sezer, U. & Arndt, M. Cavity cooling of free Si nanospheres in high vacuum. Nature Commun. 4, 2743 (2013).

    Article  ADS  Google Scholar 

  29. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  30. Lamb, J. W. Miscellaneous data on materials for millimetre and submillimetre optics. Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).

    Article  ADS  Google Scholar 

  31. Lämmerzahl, C. A Hamilton operator for quantum optics in gravitational fields. Phys. Lett. A 203, 12–17 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  32. Kiefer, C. & Singh, T. P. Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev. D 44, 1067–1076 (1991).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank M. Arndt, M. Aspelmeyer, L. Diosi and M. Vanner for discussions and S. Eibenberger for providing us with the illustration of the TPPF20 molecule. This work was supported by the Austrian Science Fund (FWF) through the doctoral program Complex Quantum Systems (CoQuS), the Vienna Center for Quantum Science and Technology (VCQ), the SFB FoQuS and the Individual Project 24621, by the Foundational Questions Institute (FQXi), the John Templeton Foundation, the Australian Research Council Centre of Excellence for Engineered Quantum Systems (grant number CE110001013), the European Commission through RAQUEL (No. 323970) and the COST Action MP1209.

Author information

Authors and Affiliations

Authors

Contributions

I.P., M.Z., F.C. and Č.B. contributed to all aspects of the research, with the leading input from I.P.

Corresponding author

Correspondence to Igor Pikovski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikovski, I., Zych, M., Costa, F. et al. Universal decoherence due to gravitational time dilation. Nature Phys 11, 668–672 (2015). https://doi.org/10.1038/nphys3366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing