Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances

Abstract

Metamaterials1,2,3,4,5 are artificial materials that exhibit unusual properties for electromagnetic and sound waves. The quanta, namely photons and phonons, of these waves interact resonantly with these exotic man-made materials enabling many applications1. For instance, resonant light absorption6,7,8 in photonic metamaterials can efficiently convert optical energy into heat based on the photothermal9 effect. Here, we present a plasmonic metamaterial that simultaneously supports thermomechanically coupled optical and mechanical resonances for controlling mechanical damping with light10. In this metamaterial absorber6 with voltage-tunable Fano resonances, we experimentally achieve optically pumped coherent mechanical oscillations10 based on a plasmomechanical11,12,13,14,15,16,17,18,19 parametric gain mechanism over an 4 THz bandwidth. Through the reverse effect, optical damping of mechanical resonance is also achieved. Our results provide a metamaterial-based approach for optical manipulation of the dynamics of mechanical oscillators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metamaterial design.
Figure 2: Optical Fano resonances.
Figure 3: Mechanical resonances and plasmomechanical coupling.
Figure 4: Coherent mechanical oscillation.
Figure 5: Plasmomechanical damping.

Similar content being viewed by others

References

  1. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Article  ADS  Google Scholar 

  2. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  ADS  Google Scholar 

  3. Li, J., Fok, L., Yin, X., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931–934 (2009).

    Article  ADS  Google Scholar 

  4. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  5. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  6. Avitzour, Y., Urzhumov, Y. A. & Shvets, G. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B 79, 045131 (2009).

    Article  ADS  Google Scholar 

  7. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    Article  ADS  Google Scholar 

  8. Aydin, K., Ferry, V. E., Briggs, R. M. & Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011).

    Article  ADS  Google Scholar 

  9. Hogan, N. J. et al. Nanoparticles heat through light localization. Nano Lett. 14, 4640–4645 (2014).

    Article  ADS  Google Scholar 

  10. Khurgin, J. B., Pruessner, M. W., Stievater, T. H. & Rabinovich, W. S. Laser-rate-equation description of optomechanical oscillators. Phys. Rev. Lett. 108, 223904 (2012).

    Article  ADS  Google Scholar 

  11. Ou, J.-Y., Plum, E., Zhang, J. & Zheludev, N. I. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotech. 8, 252–255 (2013).

    Article  ADS  Google Scholar 

  12. Yi, F., Zhu, H., Reed, J. C. & Cubukcu, E. Plasmonically enhanced thermomechanical detection of infrared radiation. Nano Lett. 13, 1638–1643 (2013).

    Article  ADS  Google Scholar 

  13. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Optical gecko toe: optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces. Phys. Rev. B 85, 205123 (2012).

    Article  ADS  Google Scholar 

  14. O'Brien, K. et al. Ultrafast acousto-plasmonic control and sensing in complex nanostructures. Nat. Commun. 5, 5042 (2014).

    Article  Google Scholar 

  15. Thijssen, R., Verhagen, E., Kippenberg, T. J. & Polman, A. Plasmon nanomechanical coupling for nanoscale transduction. Nano Lett. 13, 3293–3297 (2013).

    Article  ADS  Google Scholar 

  16. Tao, H. et al. Microwave and terahertz wave sensing with metamaterials. Opt. Express 19, 21620–21626 (2011).

    Article  ADS  Google Scholar 

  17. Zhang, J., MacDonald, K. F. & Zheludev, N. I. Nonlinear dielectric optomechanical metamaterials. Light Sci. Appl. 2, e96 (2013).

    Article  ADS  Google Scholar 

  18. Ruello, P. et al. Ultrafast acousto-plasmonics in gold nanoparticle superlattices. Phys. Rev. B 92, 174304 (2015).

    Article  ADS  Google Scholar 

  19. Temnov, V. V. Ultrafast acousto-magneto-plasmonics. Nat. Photon. 6, 728–736 (2012).

    Article  ADS  Google Scholar 

  20. Gu, J. et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012).

    Article  ADS  Google Scholar 

  21. Braginsky, V. B., Strigin, S. E. & Vyatchanin, S. P. Parametric oscillatory instability in Fabry–Perot interferometer. Phys. Lett. A 287, 331–338 (2001).

    Article  ADS  Google Scholar 

  22. Wu, C. & Shvets, G. Design of metamaterial surfaces with broadband absorbance. Opt. Lett. 37, 308–310 (2012).

    Article  ADS  Google Scholar 

  23. Kats, M. A. et al. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101–221105 (2012).

    Article  ADS  Google Scholar 

  24. Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014).

    Article  ADS  Google Scholar 

  25. Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

    Article  ADS  Google Scholar 

  26. Yanik, A. A. et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl Acad. Sci. USA 108, 11784–11789 (2011).

    Article  ADS  Google Scholar 

  27. Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    Article  ADS  Google Scholar 

  28. Lovera, A., Gallinet, B., Nordlander, P. & Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013).

    Article  Google Scholar 

  29. Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    Article  ADS  Google Scholar 

  30. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  31. Okamoto, H. et al. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures. Nat. Commun. 6, 8478 (2015).

    Article  ADS  Google Scholar 

  32. Chihhui, W. et al. Large-area wide-angle spectrally selective plasmonic absorber. Phys. Rev. B 84, 075102 (2011).

    Article  Google Scholar 

  33. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    Article  ADS  Google Scholar 

  34. Khurgin, J. B., Pruessner, M. W., Stievater, T. H. & Rabinovich, W. S. Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification. New J. Phys. 14, 105022 (2012).

    Article  ADS  Google Scholar 

  35. Zalalutdinov, M. et al. Autoparametric optical drive for micromechanical oscillators. Appl. Phys. Lett. 79, 695–697 (2001).

    Article  ADS  Google Scholar 

  36. Woolf, D. et al. Optomechanical and photothermal interactions in suspended photonic crystal membranes. Opt. Express 21, 7258–7275 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) Electrical, Communications and Cyber Systems (ECCS) division under ECCS-1632797 (M. Fallahi). Part of this work was carried out in the Penn Quattrone nanofabrication facilities and the Nanoscale Characterization Facility (NCF), a member of the NSF-funded Materials Research Facilities Network. The authors thank A.Y. Zhu for discussions.

Author information

Authors and Affiliations

Authors

Contributions

E.C. conceived the idea and experiment design. H.Z and F.Y. built the measurement system. H.Z. performed the device design, fabrication and measurements. F.Y. provided technical support for the measurement. H.Z. and E.C. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Ertugrul Cubukcu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Yi, F. & Cubukcu, E. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nature Photon 10, 709–714 (2016). https://doi.org/10.1038/nphoton.2016.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing