Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated all-photonic non-volatile multi-level memory

Abstract

Implementing on-chip non-volatile photonic memories has been a long-term, yet elusive goal. Photonic data storage would dramatically improve performance in existing computing architectures1 by reducing the latencies associated with electrical memories2 and potentially eliminating optoelectronic conversions3. Furthermore, multi-level photonic memories with random access would allow for leveraging even greater computational capability4,5,6. However, photonic memories3,7,8,9,10 have thus far been volatile. Here, we demonstrate a robust, non-volatile, all-photonic memory based on phase-change materials. By using optical near-field effects, we realize bit storage of up to eight levels in a single device that readily switches between intermediate states. Our on-chip memory cells feature single-shot readout and switching energies as low as 13.4 pJ at speeds approaching 1 GHz. We show that individual memory elements can be addressed using a wavelength multiplexing scheme. Our multi-level, multi-bit devices provide a pathway towards eliminating the von Neumann bottleneck and portend a new paradigm in all-photonic memory and non-conventional computing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Operation principle of the all-optical on-chip memory device.
Figure 2: Reversible and reproducible single-shot switching.
Figure 3: A multi-bit, multi-wavelength architecture.
Figure 4: Multi-level operation of the all-photonic memory element.

Similar content being viewed by others

References

  1. Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nature Photon. 4, 261–263 (2010).

    Article  Google Scholar 

  2. Pirovano, A. & Schuegraf, K. Memory grows up. Nature Nanotech. 5, 177–178 (2010).

    Article  ADS  Google Scholar 

  3. Kuramochi, E. et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nature Photon. 8, 474–481 (2014).

    Article  ADS  Google Scholar 

  4. Zhou, Y. et al. An upconverted photonic nonvolatile memory. Nature Commun. 5, 4720 (2014).

    Article  ADS  Google Scholar 

  5. Di Ventra, M. & Pershin, Y. V. The parallel approach. Nature Phys. 9, 200–202 (2013).

    Article  ADS  Google Scholar 

  6. Woods, D. & Naughton, T. J. Optical computing: photonic neural networks. Nature Phys. 8, 257–259 (2012).

    Article  ADS  Google Scholar 

  7. Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 11–14 (2004).

    Article  Google Scholar 

  8. Zimmermann, S. A semiconductor-based photonic memory cell. Science 283, 1292–1295 (1999).

    Article  ADS  Google Scholar 

  9. Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A. & Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photon. 1, 49–52 (2007).

    Article  ADS  Google Scholar 

  10. Liu, L., Kumar, R. & Huybrechts, K. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photon. 4, 182–187 (2010).

    Article  ADS  Google Scholar 

  11. Reed, G. T. Silicon Photonics: The State of the Art (Springer, 2008).

    Book  Google Scholar 

  12. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).

    Article  ADS  Google Scholar 

  13. Wright, C. D., Hosseini, P. & Diosdado, J. A. V. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater. 23, 2248–2254 (2013).

    Article  Google Scholar 

  14. Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014).

    Article  Google Scholar 

  15. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  ADS  Google Scholar 

  16. Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010).

    Article  Google Scholar 

  17. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  ADS  Google Scholar 

  18. Jeyasingh, R. et al. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. Nano Lett. 14, 3419–3426 (2014).

    Article  ADS  Google Scholar 

  19. Simpson, R. E. et al. Interfacial phase-change memory. Nature Nanotech. 6, 501–505 (2011).

    Article  ADS  Google Scholar 

  20. Lee, S.-H., Jung, Y. & Agarwal, R. Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. Nature Nanotech. 2, 626–630 (2007).

    Article  ADS  Google Scholar 

  21. Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phy. 88, 7020–7028 (2000).

    Article  ADS  Google Scholar 

  22. Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    Article  ADS  Google Scholar 

  23. Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377 (2013).

    Article  Google Scholar 

  24. Rudé, M. et al. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119 (2013).

    Article  ADS  Google Scholar 

  25. Ikuma, Y. et al. Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide. Electron. Lett. 46, 368 (2010).

    Article  Google Scholar 

  26. Pernice, W. H. P. & Bhaskaran, H. Photonic non-volatile memories using phase change materials. Appl. Phys. Lett. 101, 171101 (2012).

    Article  ADS  Google Scholar 

  27. Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    Article  ADS  Google Scholar 

  28. Siegel, J., Schropp, A., Solis, J., Afonso, C. N. & Wuttig, M. Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses. Appl. Phys. Lett. 84, 2250 (2004).

    Article  ADS  Google Scholar 

  29. Wong, H. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

    Article  Google Scholar 

  30. Papandreou, N. et al. Programming algorithms for multilevel phase-change memory. Proc. IEEE Int. Symp. Circuits Syst. 329–332 (2011).

  31. Dai, D. & Bowers, J. E. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics 3, 1–30 (2013).

    Google Scholar 

  32. Xia, F. X. F., O'Boyle, M., Sekaric, L. & Vlasov, Y. A. Ultra-compact wavelength division multiplexing devices using silicon photonic wires for on-chip interconnects. Proc. OFC/NFOEC 2007–2007 Conf. Opt. Fiber Commun. Natl. Fiber Opt. Eng. Conf. OWG2 (2007); http://doi.org/c23c6r

  33. Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 614–616 (2014).

    Article  Google Scholar 

  34. Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M. & Hicken, R. J. Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater. 23, 3408–3413 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by Deutsche Forschungsgemeinschaft (DFG) grants PE 1832/1-1 and PE 1832/2-1 and EPSRC grant EP/J018783/1. C.R. is grateful to JEOL UK and the Clarendon Fund for funding his graduate studies. M.S. acknowledges support from the Karlsruhe School of Optics and Photonics (KSOP) and the Stiftung der Deutschen Wirtschaft (sdw). H.B. acknowledges support from the John Fell Fund and the EPSRC (EP/J00541X/2 and EP/J018694/1).The authors also acknowledge support from the DFG and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A6.4. This work was partly carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, http://www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, http://www.kit.edu). The authors thank S. Diewald for assistance with device fabrication and M. Blaicher for technical assistance with device design.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially. W.H.P.P. and H.B. conceived, planned and supervised the project. C.R. and M.S. fabricated the samples and realized the reversible switching and multilevel measurements, and the thermo-optical response and speed measurements. P.H., C.D.W. and H.B. deposited and characterized the GST. D.W. and T.S. performed the TEM analysis of the specimen. All authors analysed the data and helped write the manuscript.

Corresponding authors

Correspondence to Harish Bhaskaran or Wolfram H. P. Pernice.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos, C., Stegmaier, M., Hosseini, P. et al. Integrated all-photonic non-volatile multi-level memory. Nature Photon 9, 725–732 (2015). https://doi.org/10.1038/nphoton.2015.182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing