Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence

Abstract

Cell-mediated drug-delivery systems have received considerable attention for their enhanced therapeutic specificity and efficacy in cancer treatment. Neutrophils (NEs), the most abundant type of immune cells, are known to penetrate inflamed brain tumours. Here we show that NEs carrying liposomes that contain paclitaxel (PTX) can penetrate the brain and suppress the recurrence of glioma in mice whose tumour has been resected surgically. Inflammatory factors released after tumour resection guide the movement of the NEs into the inflamed brain. The highly concentrated inflammatory signals in the brain trigger the release of liposomal PTX from the NEs, which allows delivery of PTX into the remaining invading tumour cells. We show that this NE-mediated delivery of drugs efficiently slows the recurrent growth of tumours, with significantly improved survival rates, but does not completely inhibit the regrowth of tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic design of NE-mediated anticancer drug delivery for the suppression of postoperative glioma recurrence.
Figure 2: Preparation and characterization of PTX-CL/NEs.
Figure 3: Inflammation-directed sequential delivery.
Figure 4: Pro-inflammatory cytokines are upregulated in the glioma surgical resection model.
Figure 5: PTX-CL/NEs are recruited to the brain and mediate an antitumour effect.

Similar content being viewed by others

References

  1. Gladson, C. L., Prayson, R. A. & Liu, W. M. The pathobiology of glioma tumors. Annu. Rev. Pathol. 5, 33–50 (2010).

    Article  CAS  Google Scholar 

  2. Agrawal, N. S. et al. Current studies of immunotherapy on glioblastoma. J. Neurol. Neurosurg. 1, 1000104 (2014).

    Google Scholar 

  3. Huse, J. T. & Holland, E. C. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer 10, 319–331 (2010).

    Article  CAS  Google Scholar 

  4. Park, J. K. et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J. Clin. Oncol. 28, 3838–3843 (2010).

    Article  Google Scholar 

  5. Lacroix, M. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 95, 190–198 (2001).

    Article  CAS  Google Scholar 

  6. Ballabh, P., Braun, A. & Nedergaard, M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis. 16, 1–13 (2004).

    Article  CAS  Google Scholar 

  7. Stern, J. I. & Raizer, J. J. Chemotherapy in the treatment of malignant gliomas. Expert Rev. Anticancer Ther. 6, 755–767 (2006).

    Article  CAS  Google Scholar 

  8. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotech. 2, 751–760 (2007).

    Article  CAS  Google Scholar 

  9. Mo, R. & Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 19, 274–283 (2016).

    Article  CAS  Google Scholar 

  10. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Mater. Rev. 1, 16075 (2016).

    Article  Google Scholar 

  11. Mangraviti, A., Gullotti, D., Tyler, B. & Brem, H. Nanobiotechnology-based delivery strategies: new frontiers in brain tumor targeted therapies. J. Control. Release 240, 443–453 (2016).

    Article  CAS  Google Scholar 

  12. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  Google Scholar 

  13. Huynh, G. H., Deen, D. F. & Szoka, F. C. Barriers to carrier mediated drug and gene delivery to brain tumors. J. Control. Release 110, 236–259 (2006).

    Article  CAS  Google Scholar 

  14. Pierige, F., Serafini, S., Rossi, L. & Magnani, M. Cell-based drug delivery. Adv. Drug Deliv. Rev. 60, 286–295 (2008).

    Article  CAS  Google Scholar 

  15. Batrakova, E. V., Gendelman, H. E. & Kabanov, A. V. Cell-mediated drug delivery. Expert Opin. Drug Deliv. 8, 415–433 (2011).

    Article  CAS  Google Scholar 

  16. Gu, L. & Mooney, D. J. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer. 16, 56–66 (2016).

    Article  CAS  Google Scholar 

  17. Bernardes-Silva, M., Anthony, D. C., Issekutz, A. C. & Perry, V. H. Recruitment of neutrophils across the blood–brain barrier: the role of E- and P-selectins. J. Cereb. Blood Flow Metab. 21, 1115–1124 (2001).

    Article  CAS  Google Scholar 

  18. Joice, S. L. et al. Modulation of blood–brain barrier permeability by neutrophils: in vitro and in vivo studies. Brain Res. 1298, 13–23 (2009).

    Article  CAS  Google Scholar 

  19. Fossati, G. et al. Neutrophil infiltration into human gliomas. Acta Neuropathol. 98, 349–354 (1999).

    Article  CAS  Google Scholar 

  20. Qin, J. et al. Surface modification of RGD-liposomes for selective drug delivery to monocytes/neutrophils in brain. Chem. Pharm. Bull. 55, 1192–1197 (2007).

    Article  CAS  Google Scholar 

  21. Mishalian, I. et al. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol. Immunother. 62, 1745–1756 (2013).

    Article  CAS  Google Scholar 

  22. Gregory, A. D. & Houghton, A. M. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. 71, 2411–2416 (2011).

    Article  CAS  Google Scholar 

  23. Salmaggi, A. et al. Intracavitary vEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J. Neurooncol. 62, 297–303 (2003).

    Article  Google Scholar 

  24. Brat, D. J., Bellail, A. C. & Van Meir, E. G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro. Oncol. 7, 122–133 (2005).

    Article  CAS  Google Scholar 

  25. Ryuto, M. et al. Induction of vascular endothelial growth factor by tumor necrosis factor α in human glioma cells. Possible roles of SP-1. J. Biol. Chem. 271, 28220–28228 (1996).

    Article  CAS  Google Scholar 

  26. Nabors, L. B. et al. Tumor necrosis factor α induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer Res. 63, 4181–4187 (2003).

    CAS  Google Scholar 

  27. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  Google Scholar 

  28. Postma, T. J. et al. A phase II study of paclitaxel in chemonaïve patients with recurrent high-grade glioma. Ann. Oncol. 11, 409–413 (2000).

    Article  CAS  Google Scholar 

  29. Lidar, Z. et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J. Neurosurg. 100, 472–479 (2004).

    Article  CAS  Google Scholar 

  30. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  Google Scholar 

  31. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  Google Scholar 

  32. Keshari, R. S. et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS ONE 7, e48111 (2012).

    Article  CAS  Google Scholar 

  33. Boxio, R., Bossenmeyer-Pourié, C., Steinckwich, N., Dournon, C. & Nüsse, O. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol. 75, 604–611 (2004).

    Article  CAS  Google Scholar 

  34. Anderson, D. C., Miller, L. J., Schmalstieg, F. C., Rothlein, R. & Springer, T. A. Contributions of the Mac-I glycoprotein family to adherence-dependent granulocyte functions: structure–function assessments employing subunit-specific monoclonal antibodies. J. Immunol. 137, 15–27 (1986).

    CAS  Google Scholar 

  35. Diamond, M. S. & Springer, T. A. A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J. Cell Biol. 120, 545–556 (1993).

    Article  CAS  Google Scholar 

  36. Marasco, W. et al. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem. 259, 5430–5439 (1984).

    CAS  Google Scholar 

  37. Heit, B., Liu, L., Colarusso, P., Puri, K. D. & Kubes, P. Pi3k accelerates, but is not required for, neutrophil chemotaxis to fMLP. J. Cell Sci. 121, 205–214 (2008).

    Article  CAS  Google Scholar 

  38. Paulsson, J. M., Jacobson, S. H. & Lundahl, J. Neutrophil activation during transmigration in vivo and in vitro: a translational study using the skin chamber model. J. Immunol. Methods 361, 82–88 (2010).

    Article  CAS  Google Scholar 

  39. Akahoshi, T. et al. Rapid induction of neutrophil apoptosis by sulfasalazine: implications of reactive oxygen species in the apoptotic process. J. Leukoc. Biol. 62, 817–826 (1997).

    Article  CAS  Google Scholar 

  40. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    Article  CAS  Google Scholar 

  41. Li, G. et al. Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann. Biomed. Eng. 38, 2499–2511 (2010).

    Article  Google Scholar 

  42. Brown, R. C., Morris, A. P. & O'Neil, R. G. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 1130, 17–30 (2007).

    Article  CAS  Google Scholar 

  43. Ju, C. et al. Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew. Chem. Int. Ed. 53, 6253–6258 (2014).

    Article  CAS  Google Scholar 

  44. Hol, J., Wilhelmsen, L. & Haraldsen, G. The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel–Palade bodies. J. Leukoc. Biol. 87, 501–508 (2010).

    Article  CAS  Google Scholar 

  45. Chauffier, K. et al. Induction of the chemokine IL-8/Kc by the articular cartilage: possible influence on osteoarthritis. Joint Bone Spine 79, 604–609 (2012).

    Article  CAS  Google Scholar 

  46. Bello, L. et al. Suppression of malignant glioma recurrence in a newly developed animal model by endogenous inhibitors. Clin. Cancer Res. 8, 3539–3548 (2002).

    CAS  Google Scholar 

  47. Allen, M., Bjerke, M., Edlund, H., Nelander, S. & Westermark, B. Origin of the U87MG glioma cell line: good news and bad news. Sci. Transl. Med. 8, 354re3 (2016).

    Article  Google Scholar 

  48. Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).

    Article  CAS  Google Scholar 

  49. Thurston, G. et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Invest. 101, 1401–1413 (1998).

    Article  CAS  Google Scholar 

  50. Partida-Sánchez, S. et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat. Med. 7, 1209–1216 (2001).

    Article  Google Scholar 

  51. Iyer, A. K., Khaled, G., Fang, J. & Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, 812–818 (2006).

    Article  CAS  Google Scholar 

  52. Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  CAS  Google Scholar 

  53. De Filippo, K. et al. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121, 4930–4937 (2013).

    Article  CAS  Google Scholar 

  54. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81273468, 81473153), the National Basic Research Program of China (2015CB755500), the State Key Laboratory of Natural Medicines at China Pharmaceutical University (SKLNMZZCX201401) and the 111 Project from the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (No. 111-2-07). We thank P. Shen, Y. Yang, X. Liu and L. Liu for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

J.X. designed and performed the experiments, and analysed the data. Z.Z., L.Z., S.S., Y.W. and Z.W. performed the experiments. L.X. and L.K. characterized the cationic lipid. L.W. synthesized the cationic lipid. H.S. and Q.P. analysed the data of the evaluation of the physiological functions of NEs. R.M. designed the experiments, analysed and interpreted the data, and wrote the manuscript. C.Z. conceived and supervised the project, and analysed and interpreted the data. All the authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Ran Mo or Can Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Zhao, Z., Zhang, L. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nature Nanotech 12, 692–700 (2017). https://doi.org/10.1038/nnano.2017.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.54

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research