Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anomalous water expulsion from carbon-based rods at high humidity

Abstract

Three water adsorption–desorption mechanisms are common in inorganic materials: chemisorption, which can lead to the modification of the first coordination sphere; simple adsorption, which is reversible; and condensation, which is irreversible. Regardless of the sorption mechanism, all known materials exhibit an isotherm in which the quantity of water adsorbed increases with an increase in relative humidity. Here, we show that carbon-based rods can adsorb water at low humidity and spontaneously expel about half of the adsorbed water when the relative humidity exceeds a 50–80% threshold. The water expulsion is reversible, and is attributed to the interfacial forces between the confined rod surfaces. At wide rod spacings, a monolayer of water can form on the surface of the carbon-based rods, which subsequently leads to condensation in the confined space between adjacent rods. As the relative humidity increases, adjacent rods (confining surfaces) in the bundles are drawn closer together via capillary forces. At high relative humidity, and once the size of the confining surfaces has decreased to a critical length, a surface-induced evaporation phenomenon known as solvent cavitation occurs and water that had condensed inside the confined area is released as a vapour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Material preparation, structure and spectroscopic imaging.
Figure 2: Water adsorption isotherms.
Figure 3: Material characterization.
Figure 4: Schematic of the proposed water expulsion mechanism.

Similar content being viewed by others

References

  1. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  2. Furmaniak, S., Gauden, P. A., Terzyk, A. P. & Rychficki, G. Water adsorption on carbons - Critical review of the most popular analytical approaches. Adv. Colloid Interfac. 137, 82–143 (2008).

    Article  CAS  Google Scholar 

  3. Meng, L. Y. & Park, S. J. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications. Carbon Lett. 15, 89–104 (2014).

    Article  Google Scholar 

  4. Canivet, J., Fateeva, A., Guo, Y. M., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014).

    Article  CAS  Google Scholar 

  5. Li, X., Li, H. L., Huo, S. Q. & Li, Z. Dynamics and isotherms of water vapor sorption on mesoporous silica gels modified by different salts. Kinet. Catal. 51, 754–761 (2010).

    Article  CAS  Google Scholar 

  6. Dominguez, A., Holthaus, S. G., Koppen, S., Frauenheim, T. & da Rosa, A. L. The role of water co-adsorption on the modification of ZnO nanowires using acetic acid. Phys. Chem. Chem. Phys. 16, 8509–8514 (2014).

    Article  CAS  Google Scholar 

  7. Polarz, S. Shape matters: anisotropy of the morphology of inorganic colloidal particles - synthesis and function. Adv. Funct. Mater. 21, 3214–3230 (2011).

    Article  CAS  Google Scholar 

  8. Nath, M., Choudhury, A., Kundu, A. & Rao, C. N. R. Synthesis and characterization of magnetic iron sulfide nanowires. Adv. Mater. 15, 2098–2101 (2003).

    Article  CAS  Google Scholar 

  9. Anugwom, I. et al. Switchable ionic liquids (SILs) based on glycerol and acid gases. RSC Adv. 1, 452–457 (2011).

    Article  CAS  Google Scholar 

  10. Hu, X. D. et al. Electrically switchable capillarity of ionic liquids. J. Adhes. Sci. Technol. 26, 2069–2078 (2012).

    CAS  Google Scholar 

  11. Jessop, P. G., Heldebrant, D. J., Li, X. W., Eckert, C. A. & Liotta, C. L. Green chemistry: reversible nonpolar-to-polar solvent. Nature 436, 1102–1102 (2005).

    Article  CAS  Google Scholar 

  12. Jessop, P. G., Mercer, S. M. & Heldebrant, D. J. CO2-triggered switchable solvents, surfactants, and other materials. Energ Environ Sci 5, 7240–7253 (2012).

    Article  CAS  Google Scholar 

  13. Nixon, E. C. et al. Reversible ionic liquids as switchable surfactants for the synthesis of gold nanoparticles. Abstr. Pap. Am. Chem. S 242 ( 2011).

  14. Heldebrant, D. J., Yonker, C. R., Jessop, P. G. & Phan, L. Reversible uptake of COS, CS2, and SO2: ionic liquids with O-alkylxanthate, O-alkylthiocarbonyl, and O-alkylsulfite anions. Chem. Eur. J. 15, 7619–7627 (2009).

    Article  CAS  Google Scholar 

  15. Wei, L., Yi, X., Kun, Z. & Fei, Z. The large-scale synthesis and characterization of carbon nanotubes filled with long continuous inorganic nanowires in supercritical CS2 . Nanotechnology 17, 5702–5706 (2006).

    Article  CAS  Google Scholar 

  16. McCallum, C. L., Bandosz, T. J., McGrother, S. C., Muller, E. A. & Gubbins, K. E. A molecular model for adsorption of water on activated carbon: comparison of simulation and experiment. Langmuir 15, 533–544 (1999).

    Article  CAS  Google Scholar 

  17. Omar, A. M. E. & Roos, Y. H. Water sorption and time-dependent crystallization behaviour of freeze-dried lactose-salt mixtures. LWT Food Sci. Technol. 40, 520–528 (2007).

    Article  CAS  Google Scholar 

  18. Boursiquot, S., Mullet, M., Abdelmoula, M., Génin, J. M. & Ehrhardt, J. J. The dry oxidation of tetragonal FeS1−x mackinawite. Phys. Chem. Min. 28, 600–611 (2001).

    Article  CAS  Google Scholar 

  19. Li, J.-S. et al. Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Sci. Rep. 4, 5130 (2014).

    Article  CAS  Google Scholar 

  20. Casanovas, J., Ricart, J. M., Rubio, J., Illas, F. & Jiménez-Mateos, J. M. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials. J. Am. Chem. Soc. 118, 8071–8076 (1996).

    Article  CAS  Google Scholar 

  21. Jeon, J.-W. et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interfac. 6, 7214–7222 (2014).

    Article  CAS  Google Scholar 

  22. David, B. et al. Powders with superparamagnetic Fe3C particles studied with Mössbauer spectrometry. J. Phys. Conf. Ser. 217, 012097 (2010).

    Article  Google Scholar 

  23. David, B. et al. Preparation of iron/graphite core-shell structured nanoparticles. J. Alloys Compd. 378, 112–116 (2004).

    Article  CAS  Google Scholar 

  24. Murad, E. & Cashion, J. Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization (Kluwer Academic, 2004).

    Book  Google Scholar 

  25. Picaud, S., Collignon, B., Hoang, P. N. M. & Rayez, J. C. Adsorption of water molecules on partially oxidized graphite surfaces: a molecular dynamics study of the competition between OH and COOH sites. Phys. Chem. Chem. Phys. 10, 6998–7009 (2008).

    Article  CAS  Google Scholar 

  26. Yang, Y., Meng, S. & Wang, E. G. Water adsorption on a NaCl (001) surface: a density functional theory study. Phys. Rev. B 74, 245409 (2006).

    Article  Google Scholar 

  27. Chen, Y. W. & Cheng, H. P. Structure and stability of thin water films on quartz surfaces. Appl. Phys. Lett. 97, 161909 (2010).

    Article  Google Scholar 

  28. Sundararajan, M. X-ray Scattering Study of Capillary Condensation in Mesoporous Silica MSc thesis, Ohio Univ. (2013).

  29. Morishige, K. & Kittaka, S. Kinetics of capillary condensation of water in mesoporous carbon: nucleation and meniscus growth. J. Phys. Chem. C 119, 18287–18292 (2015).

    Article  CAS  Google Scholar 

  30. Ashbaugh, H. S. Solvent cavitation under solvophobic confinement. J. Chem. Phys. 139, 064702 (2013).

    Article  Google Scholar 

  31. Sharma, S. & Debenedetti, P. G. Evaporation rate of water in hydrophobic confinement. Proc. Natl Acad. Sci. USA 109, 4365–4370 (2012).

    Article  CAS  Google Scholar 

  32. Lum, K., Chandler, D. & Weeks, J. D. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103, 4570–4577 (1999).

    Article  CAS  Google Scholar 

  33. Cerdeirina, C. A., Debenedetti, P. G., Rossky, P. J. & Giovambattista, N. Evaporation length scales of confined water and some common organic liquids. J. Phys. Chem. Lett. 2, 1000–1003 (2011).

    Article  CAS  Google Scholar 

  34. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  35. Xu, L. M. & Molinero, V. Liquid-vapor oscillations of water nanoconfined between hydrophobic disks: thermodynamics and kinetics. J. Phys. Chem. B 114, 7320–7328 (2010).

    Article  CAS  Google Scholar 

  36. Leung, K., Luzar, A. & Bratko, D. Dynamics of capillary drying in water. Phys. Rev. Lett. 90, 065502 (2003).

    Article  Google Scholar 

  37. Pangali, C., Rao, M. & Berne, B. J. Monte-carlo simulation of the hydrophobic interaction. J. Chem. Phys. 71, 2975–2981 (1979).

    Article  CAS  Google Scholar 

  38. Luzar, A. Activation barrier scaling for the spontaneous evaporation of confined water. J. Phys. Chem. B 108, 19859–19866 (2004).

    Article  CAS  Google Scholar 

  39. Wallqvist, A. & Berne, B. J. Computer-simulation of hydrophobic hydration forces on stacked plates at short-range. J. Phys. Chem. 99, 2893–2899 (1995).

    Article  CAS  Google Scholar 

  40. Rabinovich, Y. I., Derjaguin, B. V. & Churaev, N. V. Direct measurements of long-range surface forces in gas and liquid-media. Adv. Colloid Interfac. 16, 63–78 (1982).

    Article  CAS  Google Scholar 

  41. Israelachvili, J. & Pashley, R. The hydrophobic interaction is long-range, decaying exponentially with distance. Nature 300, 341–342 (1982).

    Article  CAS  Google Scholar 

  42. Morrone, J. A., Li, J. & Berne, B. J. Interplay between hydrodynamics and the free energy surface in the assembly of nanoscale hydrophobes. J. Phys. Chem. B 116, 378–389 (2012).

    Article  CAS  Google Scholar 

  43. Sharma, S. & Debenedetti, P. G. Free energy barriers to evaporation of water in hydrophobic confinement. J. Phys. Chem. B 116, 13282–13289 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Pacific Northwest National Laboratory's (PNNL) Materials Synthesis and Simulation Across Scales (MS3) Initiative Laboratory Directed Research and Development (LDRD) programme for the support. XPS, Mössbauer spectroscopy, SEM, TEM and environmental SEM and TEM characterization was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, located at PNNL. PNNL is a multi-programme national laboratory operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830. S.K.N. and D.J.H. thank J. S. Loring for infrared analysis and M. Perkins for 3D drawings.

Author information

Authors and Affiliations

Authors

Contributions

S.K.N. and D.J.H. conceived the idea. D.B.L. synthesized all materials. S.K.N. and J.L. performed water sorption analysis. R.K.K. performed Mossbauer spectroscopy. M.N. and M.H.E. performed XPS measurements. M.J.O. performed TEM and SEM measurments and L.M.G. performed environmental TEM and SEM imaging. H.T.S. performed powder X-ray crystallography and D.W.G. performed estimation of surface density for water adsorption on carbon. S.K.N. and D.J.H. wrote the manuscript with the help of all co-authors.

Corresponding authors

Correspondence to Satish K. Nune or David J. Heldebrant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2122 kb)

Supplementary Movie 1

Supplementary Movie 1 (GIF 4795 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 31575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nune, S., Lao, D., Heldebrant, D. et al. Anomalous water expulsion from carbon-based rods at high humidity. Nature Nanotech 11, 791–797 (2016). https://doi.org/10.1038/nnano.2016.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.91

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing