Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo

Abstract

When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complement activation and immune uptake of SPIO nanoworms in human serum and plasma.
Figure 2: Spatial relationship between complement factors, protein corona and core–shell structure.
Figure 3: Mechanism of C3 binding to nanoparticles.
Figure 4: Role of serum protein corona in binding of complement AP factors to SPIO nanoworms.
Figure 5: Dynamic behaviour of C3 opsonization in vitro.
Figure 6: Dynamic behaviour of complement opsonization and protein absorption in vivo.

Similar content being viewed by others

References

  1. Moghimi, S. M., Hunter, A. C. & Andresen, T. L. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 52, 481–503 (2012).

    Article  CAS  Google Scholar 

  2. Blunk, T., Hochstrasser, D. F., Sanchez, J. C., Muller, B. W. & Muller, R. H. Colloidal carriers for intravenous drug targeting—plasma-protein adsorption patterns on surface-modified latex-particles evaluated by 2-dimensional polyacrylamide-gel electrophoresis. Electrophoresis 14, 1382–1387 (1993).

    Article  CAS  Google Scholar 

  3. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    Article  CAS  Google Scholar 

  4. Chonn, A., Semple, S. C. & Cullis, P. R. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J. Biol. Chem. 267, 18759–18765 (1992).

    CAS  Google Scholar 

  5. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotech. 8, 772–781 (2013).

    Article  CAS  Google Scholar 

  6. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotech. 8, 137–143 (2013).

    Article  CAS  Google Scholar 

  7. Mortimer, G. M. et al. Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials. ACS Nano 8, 3357–3366 (2014).

    Article  CAS  Google Scholar 

  8. Deng, Z. J., Liang, M., Monteiro, M., Toth, I. & Minchin, R. F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotech. 6, 39–44 (2011).

    Article  CAS  Google Scholar 

  9. Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 8, 2439–2455 (2014).

    Article  CAS  Google Scholar 

  10. Karmali, P. P. & Simberg, D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Exp. Opin. Drug Deliv. 8, 343–357 (2011).

    Article  CAS  Google Scholar 

  11. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  Google Scholar 

  12. Moghimi, S. M. & Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478 (2003).

    Article  CAS  Google Scholar 

  13. Moghimi, S. M. et al. Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J. Control. Rel. 146, 175–181 (2010).

    Article  CAS  Google Scholar 

  14. Salvador-Morales, C. et al. Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43, 193–201 (2006).

    Article  CAS  Google Scholar 

  15. Andersen, A. J. et al. Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano 7, 1108–1119 (2013).

    Article  CAS  Google Scholar 

  16. Hamad, I., Hunter, A. C. & Moghimi, S. M. Complement monitoring of Pluronic 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100. J. Control. Rel. 170, 167–174 (2013).

    Article  CAS  Google Scholar 

  17. Devine, D. V., Wong, K., Serrano, K., Chonn, A. & Cullis, P. R. Liposome–complement interactions in rat serum: implications for liposome survival studies. Biochim. Biophys. Acta 1191, 43–51 (1994).

    Article  CAS  Google Scholar 

  18. Borchard, G. & Kreuter, J. The role of serum complement on the organ distribution of intravenously administered poly(methyl methacrylate) nanoparticles: effects of pre-coating with plasma and with serum complement. Pharm. Res. 13, 1055–1058 (1996).

    Article  CAS  Google Scholar 

  19. Hamad, I. et al. Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere–serum interface: implications for stealth nanoparticle engineering. Acs Nano 4, 6629–6638 (2010).

    Article  CAS  Google Scholar 

  20. Pedersen, M. B. et al. Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J. Immunol. 184, 1931–1945 (2010).

    Article  CAS  Google Scholar 

  21. Dobrovolskaia, M. A. et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5, 106–117 (2009).

    Article  CAS  Google Scholar 

  22. Andersson, J., Ekdahl, K. N., Lambris, J. D. & Nilsson, B. Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials 26, 1477–1485 (2005).

    Article  CAS  Google Scholar 

  23. Andersson, J., Ekdahl, K. N., Larsson, R., Nilsson, U. R. & Nilsson, B. C3 adsorbed to a polymer surface can form an initiating alternative pathway convertase. J. Immunol. 168, 5786–5791 (2002).

    Article  CAS  Google Scholar 

  24. Hong, J., Azens, A., Ekdahl, K. N., Granqvist, C. G. & Nilsson, B. Material-specific thrombin generation following contact between metal surfaces and whole blood. Biomaterials 26, 1397–1403 (2005).

    Article  CAS  Google Scholar 

  25. Gbadamosi, J. K., Hunter, A. C. & Moghimi, S. M. PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett. 532, 338–344 (2002).

    Article  CAS  Google Scholar 

  26. Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).

    Article  CAS  Google Scholar 

  27. Park, J. H. et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5, 694–700 (2009).

    Article  CAS  Google Scholar 

  28. Park, J. H. et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 20, 1630–1635 (2008).

    Article  CAS  Google Scholar 

  29. Kawaguchi, T. & Hasegawa, M. Structure of dextran–magnetite complex: relation between conformation of dextran chains covering core and its molecular weight. J. Mater. Sci. Mater. Med. 11, 31–35 (2000).

    Article  CAS  Google Scholar 

  30. Jung, C. W. Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 675–691 (1995).

    Article  CAS  Google Scholar 

  31. Alcorlo, M., Tortajada, A., Rodriguez de Cordoba, S. & Llorca, O. Structural basis for the stabilization of the complement alternative pathway C3 convertase by properdin. Proc. Natl Acad. Sci. USA 110, 13504–13509 (2013).

    Article  CAS  Google Scholar 

  32. Gupta-Bansal, R., Parent, J. B. & Brunden, K. R. Inhibition of complement alternative pathway function with anti-properdin monoclonal antibodies. Mol. Immunol. 37, 191–201 (2000).

    Article  CAS  Google Scholar 

  33. Carlsson, F., Sandin, C. & Lindahl, G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol. Microbiol. 56, 28–39 (2005).

    Article  CAS  Google Scholar 

  34. Pelaz, B. et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9, 6996–7008 (2015).

    Article  CAS  Google Scholar 

  35. Simberg, D. et al. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30, 3926–3933 (2009).

    Article  CAS  Google Scholar 

  36. Arima, Y., Kawagoe, M., Toda, M. & Iwata, H. Complement activation by polymers carrying hydroxyl groups. ACS Appl. Mater. Interfaces 1, 2400–2407 (2009).

    Article  CAS  Google Scholar 

  37. Lemarchand, C. et al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27, 108–118 (2006).

    Article  CAS  Google Scholar 

  38. Venkatesh, Y. P., Minich, T. M., Law, S. K. & Levine, R. P. Natural release of covalently bound C3b from cell surfaces and the study of this phenomenon in the fluid-phase system. J. Immunol. 132, 1435–1439 (1984).

    CAS  Google Scholar 

  39. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  Google Scholar 

  40. Gadd, K. J. & Reid, K. B. The binding of complement component C3 to antibody–antigen aggregates after activation of the alternative pathway in human serum. Biochem. J. 195, 471–480 (1981).

    Article  CAS  Google Scholar 

  41. Zhou, H. F. et al. Antibody directs properdin-dependent activation of the complement alternative pathway in a mouse model of abdominal aortic aneurysm. Proc. Natl Acad. Sci. USA 109, E415–E422 (2012).

    Article  CAS  Google Scholar 

  42. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  Google Scholar 

  43. Moghimi, S. M. Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth. J. Control. Rel. 190, 556–562 (2014).

    Article  CAS  Google Scholar 

  44. Zamboni, W. C. et al. Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J. Liposome Res. 21, 158–165 (2011).

    Article  CAS  Google Scholar 

  45. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

    CAS  Google Scholar 

  46. Hamada, I., Hunter, A. C., Szebeni, J. & Moghimi, S. M. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol. Immunol. 46, 225–232 (2008).

    Article  Google Scholar 

  47. Dai, Q., Walkey, C. & Chan, W. C. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. 53, 5093–5096 (2014).

    Article  CAS  Google Scholar 

  48. Wu, Y. Q. et al. Protection of nonself surfaces from complement attack by factor H-binding peptides: implications for therapeutic medicine. J. Immunol. 186, 4269–4277 (2011).

    Article  CAS  Google Scholar 

  49. Thomas, S. N. et al. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials 32, 2194–2203 (2011).

    Article  CAS  Google Scholar 

  50. Pauly, D. et al. A novel antibody against human properdin inhibits the alternative complement system and specifically detects properdin from blood samples. PLoS ONE 9, e96371 (2014).

    Article  Google Scholar 

  51. Kozel, T. R., Wilson, M. A., Pfrommer, G. S. & Schlageter, A. M. Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect. Immun. 57, 1922–1927 (1989).

    CAS  Google Scholar 

  52. Molday, R. S. & MacKenzie, D. Immunospecific ferromagnetic iron–dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods 52, 353–367 (1982).

    Article  CAS  Google Scholar 

  53. Wang, G. et al. High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano 8, 12437–12449 (2014).

    Article  CAS  Google Scholar 

  54. Reynolds, F., O'Loughlin, T., Weissleder, R. & Josephson, L. Method of determining nanoparticle core weight. Anal. Chem. 77, 814–817 (2005).

    Article  CAS  Google Scholar 

  55. Bautista, M. C., Bomati-Miguel, O., Morales, M. D., Serna, C. J. & Veintemillas-Verdaguer, S. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. Magn. Magn. Mater. 293, 20–27 (2005).

    Article  CAS  Google Scholar 

  56. Harpaz, Y., Gerstein, M. & Chothia, C. Volume changes on protein folding. Structure 2, 641–649 (1994).

    Article  CAS  Google Scholar 

  57. Quillin, M. L. & Matthews, B. W. Accurate calculation of the density of proteins. Acta Crystallogr. D 56, 791–794 (2000).

    Article  CAS  Google Scholar 

  58. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  CAS  Google Scholar 

  59. Inturi, S. et al. Modulatory role of surface coating of superparamagnetic iron oxide nanoworms in complement opsonization and leukocyte uptake. ACS Nano 9, 10758–10768 (2015).

    Article  CAS  Google Scholar 

  60. Forneris, F. et al. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science 330, 1816–1820 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the University of Colorado Denver start-up funding and NIH 1R01EB022040 to D.S. F.C. was supported by the International Postdoctoral Exchange Fellowship Program (2013) from China Postdoctoral Council. Molecular modelling studies were conducted at the University of Colorado Computational Chemistry and Biology Core Facility, which is supported in part by NIH/NCATS Colorado CTSA grant no. UL1 TR001082. S.M.M. acknowledges financial support by the Danish Agency for Science, Technology and Innovation (Det Strategiske Forskningsråd), reference 09-065746, and Technology and Production, reference 12-126894.

Author information

Authors and Affiliations

Authors

Contributions

F.C., G.W., J.I.G., B.B. and L.W. performed the experiments. D.S.B. performed complement modelling. S.M.M., N.K.B., V.M.H. and D.S. analysed the data and edited the manuscript. N.K.B. and V.M.H. provided critical reagents. S.M.M. and D.S. wrote the manuscript.

Corresponding author

Correspondence to Dmitri Simberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2609 kb)

Supplementary information

Supplementary information (XLSX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Wang, G., Griffin, J. et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nature Nanotech 12, 387–393 (2017). https://doi.org/10.1038/nnano.2016.269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.269

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research