Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale chemical assembly of atomically thin transistors and circuits

Abstract

Next-generation electronics calls for new materials beyond silicon, aiming at increased functionality, performance and scaling in integrated circuits. In this respect, two-dimensional gapless graphene and semiconducting transition-metal dichalcogenides have emerged as promising candidates due to their atomic thickness and chemical stability. However, difficulties with precise spatial control during their assembly currently impede actual integration into devices. Here, we report on the large-scale, spatially controlled synthesis of heterostructures made of single-layer semiconducting molybdenum disulfide contacting conductive graphene. Transmission electron microscopy studies reveal that the single-layer molybdenum disulfide nucleates at the graphene edges. We demonstrate that such chemically assembled atomic transistors exhibit high transconductance (10 µS), on–off ratio (106) and mobility (17 cm2 V−1 s−1). The precise site selectivity from atomically thin conducting and semiconducting crystals enables us to exploit these heterostructures to assemble two-dimensional logic circuits, such as an NMOS inverter with high voltage gain (up to 70).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth scheme and optical characterizations of the graphene–MoS2 heterostructure.
Figure 2: Electron microscopy of the graphene–MoS2 structure and compositional map.
Figure 3: Room-temperature electrical transport measurements of the graphene–MoS2 heterostructure transistor.
Figure 4: Demonstrating logic through a heterostructure inverter.

Similar content being viewed by others

References

  1. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Article  Google Scholar 

  2. Duan, X., Huang, Y., Cui, Y., Wang, J. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  3. Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003).

    Article  CAS  Google Scholar 

  4. Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).

    Article  CAS  Google Scholar 

  5. Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  6. Ren, Z. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998).

    Article  CAS  Google Scholar 

  7. Yu, G., Cao, A. & Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotech. 2, 372–377 (2007).

    Article  CAS  Google Scholar 

  8. Yang, P. Nanotechnology: wires on water. Nature 425, 243–244 (2003).

    Article  CAS  Google Scholar 

  9. Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  CAS  Google Scholar 

  10. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  CAS  Google Scholar 

  11. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  CAS  Google Scholar 

  12. Schwierz, F. Graphene transistors. Nature Nanotech. 5, 487–496 (2010).

    Article  CAS  Google Scholar 

  13. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  14. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nature Nanotech. 8, 146–147 (2013).

    Article  CAS  Google Scholar 

  15. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  16. Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  17. Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  18. van der Zande, A. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

    Article  CAS  Google Scholar 

  19. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  20. Ling, X. et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464–472 (2014).

    Article  CAS  Google Scholar 

  21. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Mater. 13, 1135–1142 (2014).

    Article  CAS  Google Scholar 

  22. Li, M. Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    Article  CAS  Google Scholar 

  23. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

    Article  CAS  Google Scholar 

  24. Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotech. 8, 119–124 (2013).

    Article  CAS  Google Scholar 

  25. Liu, Y. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

    Article  CAS  Google Scholar 

  26. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotech. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  27. Lee, G. H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    Article  CAS  Google Scholar 

  28. Leong, W. S. et al. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. ACS Nano 9, 869–877 (2015).

    Article  CAS  Google Scholar 

  29. Yu, L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014).

    Article  CAS  Google Scholar 

  30. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010).

    Article  CAS  Google Scholar 

  31. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    Article  CAS  Google Scholar 

  32. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  CAS  Google Scholar 

  33. Gong, Y. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015).

    Article  CAS  Google Scholar 

  34. Tsen, A. W. et al. Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012).

    Article  CAS  Google Scholar 

  35. Tsen, A. W., Brown, L., Havener, R. W. & Park, J. Polycrystallinity and stacking in CVD graphene. Acc. Chem. Res. 46, 2286–2296 (2013).

    Article  CAS  Google Scholar 

  36. Shi, Y. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784–2791 (2012).

    Article  CAS  Google Scholar 

  37. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nature Mater. 13, 1128–1134 (2014).

    Article  CAS  Google Scholar 

  38. Liu, H. et al. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640–2646 (2013).

    Article  CAS  Google Scholar 

  39. Yuchen, D. et al. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron. Device Lett. 35, 599–601 (2014).

    Article  Google Scholar 

  40. Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nature Commun. 5, 5143 (2014).

    Article  CAS  Google Scholar 

  41. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotech. 9, 1024–1030 (2014).

    Article  CAS  Google Scholar 

  42. Tosun, M. et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8, 4948–4953 (2014).

    Article  CAS  Google Scholar 

  43. Ling, X. et al. Parallel stitching of 2D materials. Adv. Mater. 28, 2322–2329 (2016).

    Article  CAS  Google Scholar 

  44. Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).

    Article  CAS  Google Scholar 

  45. Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015).

    Article  CAS  Google Scholar 

  46. Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Data processing for atomic resolution electron energy loss spectroscopy. Microsc. Microanal. 18, 667–675 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Office of Naval Research (ONR) MURI programme (grant no. N00014-13-1-0678) and the National Science Foundation (EFMA-1542741). M.Z. was supported by the National Science Foundation Graduate Research Fellowship (grant no. DGE 1106400). This work used the electron microscopy facilities from the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) programme (DMR 1120296). The authors thank M. Thomas and E. Kirkland for discussions. The authors also thank M. Tosun and A. Javey for assistance with atomic layer deposition.

Author information

Authors and Affiliations

Authors

Contributions

M.Z., Y.Y. and X.Z. conceived the project. Graphene fabrication was done by Y.Y. and Y.X. M.Z. grew the heterostructure. M.Z. and H.Z. performed the optical characterizations and analysis. Y.Y., S.W. and Y.X. fabricated electrical devices. M.Z. and Y.Y. performed the electrical measurements and analysis. Y.H. and D.A.M. performed the TEM measurements and analysis. All authors contributed to discussions and writing of the manuscript. X.Z. and Y.W. guided the research.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors have filed a patent based on this work.

Supplementary information

Supplementary information

Supplementary information (PDF 1449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Ye, Y., Han, Y. et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nature Nanotech 11, 954–959 (2016). https://doi.org/10.1038/nnano.2016.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing