Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An atomically thin matter-wave beamsplitter

Abstract

Matter-wave interferometry has become an essential tool in studies on the foundations of quantum physics1 and for precision measurements2,3,4,5,6. Mechanical gratings have played an important role as coherent beamsplitters for atoms7, molecules and clusters8,9, because the basic diffraction mechanism is the same for all particles. However, polarizable objects may experience van der Waals shifts when they pass the grating walls10,11, and the undesired dephasing may prevent interferometry with massive objects12. Here, we explore how to minimize this perturbation by reducing the thickness of the diffraction mask to its ultimate physical limit, that is, the thickness of a single atom. We have fabricated diffraction masks in single-layer and bilayer graphene as well as in a 1 nm thin carbonaceous biphenyl membrane. We identify conditions to transform an array of single-layer graphene nanoribbons into a grating of carbon nanoscrolls. We show that all these ultrathin nanomasks can be used for high-contrast quantum diffraction of massive molecules. They can be seen as a nanomechanical answer to the question debated by Bohr and Einstein13 of whether a softly suspended double slit would destroy quantum interference. In agreement with Bohr's reasoning we show that quantum coherence prevails, even in the limit of atomically thin gratings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exploring the ultimate limit of nanomechanical diffraction gratings.
Figure 2: Influence of membrane thickness and material composition on the van der Waals interaction in molecule diffraction.
Figure 3: A nanomechanical implementation of the Bohr–Einstein debate.

Similar content being viewed by others

References

  1. Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nature Phys. 10, 271–277 (2014).

    Article  CAS  Google Scholar 

  2. Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).

    Article  CAS  Google Scholar 

  3. Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).

    Article  CAS  Google Scholar 

  4. Bouchendira, R., Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. New determination of the fine structure constant and test of the quantum electrodynamics. Phys. Rev. Lett. 106, 080801 (2011).

    Article  Google Scholar 

  5. Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 083001 (2013).

    Article  Google Scholar 

  6. Geiger, R. et al. Detecting inertial effects with airborne matter–wave interferometry. Nature Commun. 2, 474 (2011).

    Article  CAS  Google Scholar 

  7. Keith, D. W., Schattenburg, M. L., Smith, H. I. & Pritchard, D. E. Diffraction of atoms by a transmission grating. Phys. Rev. Lett. 61, 1580–1583 (1988).

    Article  CAS  Google Scholar 

  8. Schöllkopf, W. & Toennies, J. P. Nondestructive mass selection of small van der Waals clusters. Science 266, 1345–1348 (1994).

    Article  Google Scholar 

  9. Arndt, M. et al. Wave–particle duality of C60 molecules. Nature 401, 680–682 (1999).

    Article  CAS  Google Scholar 

  10. Grisenti, R. E., Schöllkopf, W., Toennies, J. P., Hegerfeldt, G. C. & Köhler, T. Determination of atom–surface van der Waals potentials from transmission-grating diffraction intensities. Phys. Rev. Lett. 83, 1755–1758 (1999).

    Article  CAS  Google Scholar 

  11. Lonij, V. P. A., Klauss, C. E., Holmgren, W. F. & Cronin, A. D. Atom diffraction reveals the impact of atomic core electrons on atom–surface potentials. Phys. Rev. Lett. 105, 233202 (2010).

    Article  Google Scholar 

  12. Gerlich, S. et al. A Kapitza–Dirac–Talbot–Lau interferometer for highly polarizable molecules. Nature Phys. 3, 711–715 (2007).

    Article  CAS  Google Scholar 

  13. Bohr, N. in Albert Einstein Philosopher–Scientist (ed. Schilpp, P. A.) 200–241 (Tudor, 1949).

    Google Scholar 

  14. Juffmann, T., Ulbricht, H. & Arndt, M. Experimental methods of molecular matter–wave optics. Rep. Prog. Phys. 76, 086402 (2013).

    Article  Google Scholar 

  15. Bordé, C. J. Atomic interferometry with internal state labelling. Phys. Lett. A 140, 10–12 (1989).

    Article  Google Scholar 

  16. Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991).

    Article  CAS  Google Scholar 

  17. Gould, P. L., Ruff, G. A. & Pritchard, D. E. Diffraction of atoms by light: the near-resonant Kapitza–Dirac effect. Phys. Rev. Lett. 56, 827–830 (1986).

    Article  CAS  Google Scholar 

  18. Moskowitz, P. E., Gould, P. L., Atlas, S. R. & Pritchard, D. E. Diffraction of an atomic beam by standing-wave radiation. Phys. Rev. Lett. 51, 370–373 (1983).

    Article  CAS  Google Scholar 

  19. Geim, A. & Novoselov, K. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  20. Lucot, D. et al. Deposition and FIB direct patterning of nanowires and nanorings into suspended sheets of graphene. Microelectron. Eng. 86, 882–884 (2009).

    Article  CAS  Google Scholar 

  21. Liu, Z., Suenaga, K., Harris, P. & Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 102, 015501 (2009).

    Article  Google Scholar 

  22. Angelova, P. et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano 7, 6489–6497 (2013).

    Article  CAS  Google Scholar 

  23. Juffmann, T. et al. Real-time single-molecule imaging of quantum interference. Nature Nanotech. 7, 297–300 (2012).

    Article  CAS  Google Scholar 

  24. Zimmermann, B. et al. Localization and loss of coherence in molecular double-slit experiments. Nature Phys. 4, 649–655 (2008).

    Article  CAS  Google Scholar 

  25. Akoury, D. et al. The simplest double slit: interference and entanglement in double photoionization of H2 . Science 318, 949–952 (2007).

    Article  CAS  Google Scholar 

  26. Liu, X.-J. et al. Einstein–Bohr recoiling double-slit gedanken experiment performed at the molecular level. Nature Photon. 9, 120–125 (2015).

    Article  Google Scholar 

  27. Hamilton, P. et al. Antimatter interferometry for gravity measurements. Phys. Rev. Lett. 112, 121102 (2014).

    Article  Google Scholar 

  28. Scheel, S. & Buhmann, S. Path decoherence of charged and neutral particles near surfaces. Phys. Rev. A 85, 030101(R) (2012).

    Article  Google Scholar 

  29. Anglin, J. R., Paz, J. P. & Zurek, W. H. Deconstructing decoherence. Phys. Rev. A 55, 4041–4053 (1997).

    Article  CAS  Google Scholar 

  30. Nairz, O., Arndt, M. & Zeilinger, A. Experimental verification of the Heisenberg uncertainty principle for fullerene molecules. Phys. Rev. A 65, 032109 (2002).

    Article  Google Scholar 

  31. Garcia-Sanchez, D. et al. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 8, 1399–1403 (2008).

    Article  CAS  Google Scholar 

  32. Sapmaz, S., Blanter, Y. M., Gurevich, L. & van der Zant, H. S. J. Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B 67, 235414 (2003).

    Article  Google Scholar 

  33. Lemme, M. C. et al. Etching of graphene devices with a helium ion beam. ACS Nano 3, 2674–2676 (2009).

    Article  CAS  Google Scholar 

  34. Song, B. et al. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. Nano Lett. 11, 2247–2250 (2011).

    Article  CAS  Google Scholar 

  35. Wei, D. & Liu, Y. Controllable synthesis of graphene and its applications. Adv. Mater. 22, 3225–3241 (2010).

    Article  CAS  Google Scholar 

  36. Kotakoski, J. et al. Toward two-dimensional all-carbon heterostructures via ion beam patterning of single-layer graphene. Nano Lett. http://dx.doi.org/10.1021/acs.nanolett.5b02063 (2015).

  37. Ramprasad, R. & Shi, N. Polarizability of phthalocyanine based molecular systems: a first-principles electronic structure study. Appl. Phys. Lett. 88, 222903 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the European Commission (304886), the European Research Council (320694) and the Austrian Science Funds (DK CoQuS W1210-3). C.B. acknowledges financial support from the Alexander von Humboldt Foundation through a Feodor Lynen fellowship. J.K. acknowledges the Austrian Science Fund FWF for funding through project M 1481-N20. J.M. and C.M. acknowledge support from the Austrian Science Funds FWF project P 25721-N20. A.W. and A.T. acknowledge support from the DFG (SPP ‘Graphene’ TU149/2-2, Heisenberg Program TU149/3-1). T.J. acknowledges support by the Gordon and Betty Moore Foundation. The authors thank the group of Prof. Schattschneider, USTEM TU Vienna for assistance in recording the image in Fig. 1h. The authors thank S. Scheel and J. Fiedler (University of Rostock) as well as K. Hornberger and B. Stickler (University of Duisburg) for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.A., O.C., T.J. and C.B. came up with the idea for the research. Nanofabrication was carried out by M.S., O.C. and Y.L. Grating characterization was performed by O.C., M.S., J.M., J.K., C.M., C.B. and Y.L. The biphenyl membrane was produced by A.W. and A.T. Diffraction experiments were carried out by M.S., C.K., C.B. and T.J. Simulations were performed by T.J., M.S., C.K., C.B. and M.A. The manuscript was written by M.A., C.B. and M.S., in collaboration with all co-authors.

Corresponding author

Correspondence to Markus Arndt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brand, C., Sclafani, M., Knobloch, C. et al. An atomically thin matter-wave beamsplitter. Nature Nanotech 10, 845–848 (2015). https://doi.org/10.1038/nnano.2015.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing