Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deterministic photon–emitter coupling in chiral photonic circuits

Abstract

Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light–matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission1,2 and scattering3 may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light–matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors4 and deterministic quantum gates5. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters6 for experimentally achievable parameters7, may lead to novel topological photon states8,9 and could be applied for directional steering of light10,11,12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Operational principle of chiral single-photon emission in a waveguide.
Figure 2: Observation of directional emission of single QDs in a GPW.
Figure 3: Non-reciprocal transport of photons in a chiral photonic circuit.

Similar content being viewed by others

References

  1. Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nature Commun. 5, 5713 (2014).

    Article  CAS  Google Scholar 

  2. Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

    Article  CAS  Google Scholar 

  3. Junge, C., O'Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).

    Article  Google Scholar 

  4. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  CAS  Google Scholar 

  5. Duan, L. M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  Google Scholar 

  6. Stannigel, K., Rabl, P. & Zoller, P. Driven-dissipative preparation of entangled states in cascaded quantum-optical networks. New J. Phys. 14, 063014 (2012).

    Article  Google Scholar 

  7. Ramos, T., Pichler, H., Daley, A. J. & Zoller, P. Quantum spin dimers from chiral dissipation in cold-atom chains. Phys. Rev. Lett. 113, 237203 (2014).

    Article  Google Scholar 

  8. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2010).

    Article  Google Scholar 

  9. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    Article  Google Scholar 

  10. Rodriguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    Article  Google Scholar 

  11. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).

    Article  CAS  Google Scholar 

  12. Neugebauer, M., Bauer, T., Banzer, P. & Leuchs, G. Polarization tailored light driven directional optical nanobeacon. Nano Lett. 14, 2546–2551 (2014).

    Article  CAS  Google Scholar 

  13. le Feber, B., Rotenberg, N. & Kuipers, L. Nanophotonic control of circular dipole emission. Nature Commun. 6, 6695 (2015).

    Article  CAS  Google Scholar 

  14. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  CAS  Google Scholar 

  15. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    Article  CAS  Google Scholar 

  16. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  Google Scholar 

  17. Santori, C., Fattal, D. & Yamamoto, Y. Single-Photon Devices and Applications (John Wiley & Sons, Inc., 2010).

    Google Scholar 

  18. Yilmaz, S. T., Fallahi, P. & Imamoglu, A. Quantum-dot-spin single-photon interface. Phys. Rev. Lett. 105, 033601 (2010).

    Article  CAS  Google Scholar 

  19. Fan, S., Kocabaş, Ş. E. & Shen, J.-T. Input–output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A 82, 063821 (2010).

    Article  Google Scholar 

  20. Shen, Y., Bradford, M. & Shen, J.-T. Single-photon diode by exploiting the photon polarization in a waveguide. Phys. Rev. Lett. 107, 173902 (2011).

    Article  Google Scholar 

  21. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nature Photon. 8, 821–829 (2014).

    Article  CAS  Google Scholar 

  22. Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    Article  CAS  Google Scholar 

  23. Goban, A. et al. Atom–light interactions in photonic crystals. Nature Commun. 5, 4808 (2014).

    Article  Google Scholar 

  24. Riedrich-Möller, J. et al. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 14, 5281–5287 (2014).

    Article  Google Scholar 

  25. Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nature Commun. 6, 6173 (2015).

    Article  CAS  Google Scholar 

  26. Hoi, I.-C. et al. Generation of nonclassical microwave states using an artificial atom in 1D open space. Phys. Rev. Lett. 108, 263601 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Sørensen and D. Witthaut for valuable discussions and gratefully acknowledge financial support from the Villum Foundation, the Carlsberg Foundation, the Danish Council for Independent Research (Natural Sciences and Technology and Production Sciences), and the European Research Council (ERC Consolidator Grant ALLQUANTUM). E.H.L. and J.D.S. acknowledge support from the Global Research Lab and the Flagship Program (Korea Institute of Science and Technology).

Author information

Authors and Affiliations

Authors

Contributions

I.S. and S.M. designed the experiment and analysed the data. S.M. and A.J. performed the numerical simulations. I.S. and S.L.H. carried out the experiments. L.M., G.K., T.P. and H.E. fabricated the sample. E.H.L. and J.D.S. grew the semiconductor material. P.L. and S.S. supervised the project. P.L., S.S., S.M. and I.S. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Immo Söllner or Peter Lodahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Söllner, I., Mahmoodian, S., Hansen, S. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nature Nanotech 10, 775–778 (2015). https://doi.org/10.1038/nnano.2015.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing