Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seeing faces is necessary for face-domain formation

Abstract

Here we report that monkeys raised without exposure to faces did not develop face domains, but did develop domains for other categories and did show normal retinotopic organization, indicating that early face deprivation leads to a highly selective cortical processing deficit. Therefore, experience must be necessary for the formation (or maintenance) of face domains. Gaze tracking revealed that control monkeys looked preferentially at faces, even at ages prior to the emergence of face domains, but face-deprived monkeys did not, indicating that face looking is not innate. A retinotopic organization is present throughout the visual system at birth, so selective early viewing behavior could bias category-specific visual responses toward particular retinotopic representations, thereby leading to domain formation in stereotyped locations in inferotemporal cortex, without requiring category-specific templates or biases. Thus, we propose that environmental importance influences viewing behavior, viewing behavior drives neuronal activity, and neuronal activity sculpts domain formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Faces>objects and hands>objects activations in control and face-deprived monkeys.
Figure 2: Quantification of face and hand activations in control and face-deprived monkeys.
Figure 3: Activations to bodies minus scenes.
Figure 4: Eccentricity organization in control and face-deprived monkeys.
Figure 5: Looking behavior of control and face-deprived monkeys.

Similar content being viewed by others

References

  1. McKone, E., Crookes, K., Jeffery, L. & Dilks, D.D. A critical review of the development of face recognition: experience is less important than previously believed. Cogn. Neuropsychol. 29, 174–212 (2012).

    PubMed  Google Scholar 

  2. McKone, E., Crookes, K. & Kanwisher, N. in The Cognitive Neurosciences 4th edn. (ed. Gazzaniga, M.) 467–482 (MIT Press, 2009).

  3. Goren, C.C., Sarty, M. & Wu, P.Y. Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549 (1975).

    CAS  PubMed  Google Scholar 

  4. Johnson, M.H., Dziurawiec, S., Ellis, H. & Morton, J. Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition 40, 1–19 (1991).

    CAS  PubMed  Google Scholar 

  5. Mendelson, M.J., Haith, M.M. & Goldman-Rakic, P.S. Face scanning and responsiveness to social cues in infant rhesus monkeys. Dev. Psychol. 18, 222–228 (1982).

    Google Scholar 

  6. Cassia, V.M., Turati, C. & Simion, F. Can a nonspecific bias toward top-heavy patterns explain newborns' face preference? Psychol. Sci. 15, 379–383 (2004).

    PubMed  Google Scholar 

  7. Turati, C., Simion, F., Milani, I. & Umiltà, C. Newborns' preference for faces: what is crucial? Dev. Psychol. 38, 875–882 (2002).

    PubMed  Google Scholar 

  8. Tanaka, J.W. & Farah, M.J. Parts and wholes in face recognition. Q. J. Exp. Psychol. A 46, 225–245 (1993).

    CAS  PubMed  Google Scholar 

  9. Young, A.W., Hellawell, D. & Hay, D.C. Configurational information in face perception. Perception 16, 747–759 (1987).

    CAS  PubMed  Google Scholar 

  10. Stryker, M.P. et al. in Neurobiology of Neocortex (eds. Rakic, P. & Singer, W.) 115–136 (Wiley, 1988).

  11. Cohen, L. & Dehaene, S. Specialization within the ventral stream: the case for the visual word form area. Neuroimage 22, 466–476 (2004).

    PubMed  Google Scholar 

  12. Aguirre, G.K., Zarahn, E. & D'Esposito, M. An area within human ventral cortex sensitive to 'building' stimuli: evidence and implications. Neuron 21, 373–383 (1998).

    CAS  PubMed  Google Scholar 

  13. Srihasam, K., Vincent, J.L. & Livingstone, M.S. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17, 1776–1783 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center–periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).

    CAS  PubMed  Google Scholar 

  15. Malach, R., Levy, I. & Hasson, U. The topography of high-order human object areas. Trends Cogn. Sci. 6, 176–184 (2002).

    PubMed  Google Scholar 

  16. Martin, A., Wiggs, C.L., Ungerleider, L.G. & Haxby, J.V. Neural correlates of category-specific knowledge. Nature 379, 649–652 (1996).

    CAS  PubMed  Google Scholar 

  17. Ishai, A., Ungerleider, L.G., Martin, A., Schouten, J.L. & Haxby, J.V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl. Acad. Sci. USA 96, 9379–9384 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Arcaro, M.J. & Livingstone, M.S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. Elife 6, e26196 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Harlow, H.F. & Suomi, S.J. Social recovery by isolation-reared monkeys. Proc. Natl. Acad. Sci. USA 68, 1534–1538 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Livingstone, M.S. et al. Development of the macaque face-patch system. Nat. Commun. 8, 14897 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsao, D.Y., Freiwald, W.A., Knutsen, T.A., Mandeville, J.B. & Tootell, R.B. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6, 989–995 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pinsk, M.A., DeSimone, K., Moore, T., Gross, C.G. & Kastner, S. Representations of faces and body parts in macaque temporal cortex: a functional-MRI study. Proc. Natl. Acad. Sci. USA 102, 6996–7001 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kornblith, S., Cheng, X., Ohayon, S. & Tsao, D.Y. A network for scene processing in the macaque temporal lobe. Neuron 79, 766–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Arcaro, M.J. & Livingstone, M.S. Retinotopic organization of scene areas in macaque inferior temporal cortex. J. Neurosci. 37, 7373–7389 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nasr, S. et al. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31, 13771–13785 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Arcaro, M.J., Pinsk, M.A., Li, X. & Kastner, S. Visuotopic organization of macaque posterior parietal cortex: a functional magnetic resonance imaging study. J. Neurosci. 31, 2064–2078 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Janssens, T., Zhu, Q., Popivanov, I.D. & Vanduffel, W. Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. J. Neurosci. 34, 10156–10167 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kolster, H. et al. Visual field map clusters in macaque extrastriate visual cortex. J. Neurosci. 29, 7031–7039 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lafer-Sousa, R. & Conway, B.R. Parallel, multistage processing of colors, faces, and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16, 1870–1878 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).

    CAS  PubMed  Google Scholar 

  31. Chan, A.W., Kravitz, D.J., Truong, S., Arizpe, J. & Baker, C.I. Cortical representations of bodies and faces are strongest in commonly experienced configurations. Nat. Neurosci. 13, 417–418 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. de Haas, B. et al. Perception and processing of faces in the human brain is tuned to typical feature locations. J. Neurosci. 36, 9289–9302 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Issa, E.B. & DiCarlo, J.J. Precedence of the eye region in neural processing of faces. J. Neurosci. 32, 16666–16682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Golarai, G., Liberman, A., Yoon, J.M. & Grill-Spector, K. Differential development of the ventral visual cortex extends through adolescence. Front. Hum. Neurosci. 3, 80 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Natu, V.S. et al. Development of neural sensitivity to face identity correlates with perceptual discriminability. J. Neurosci. 36, 10893–10907 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pascalis, O., de Haan, M. & Nelson, C.A. Is face-processing species-specific during the first year of life? Science 296, 1321–1323 (2002).

    CAS  PubMed  Google Scholar 

  37. Deen, B. et al. Organization of high-level visual cortex in human infants. Nat. Commun. 8, 13995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ponce, C.R., Hartmann, T.S. & Livingstone, M.S. End-stopping predicts curvature tuning along the ventral stream. J. Neurosci. 37, 648–659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrari, P.F. et al. Neonatal imitation in rhesus macaques. PLoS Biol. 4, e302 (2006).

    PubMed  PubMed Central  Google Scholar 

  40. Meltzoff, A.N. & Moore, M.K. Newborn infants imitate adult facial gestures. Child Dev. 54, 702–709 (1983).

    CAS  PubMed  Google Scholar 

  41. Turati, C., Macchi Cassia, V., Simion, F. & Leo, I. Newborns' face recognition: role of inner and outer facial features. Child Dev. 77, 297–311 (2006).

    PubMed  Google Scholar 

  42. Oostenbroek, J. et al. Comprehensive longitudinal study challenges the existence of neonatal imitation in humans. Curr. Biol. 26, 1334–1338 (2016).

    CAS  PubMed  Google Scholar 

  43. James, W. The Principles of Psychology (H. Holt and Company, 1890).

  44. Sugita, Y. Face perception in monkeys reared with no exposure to faces. Proc. Natl. Acad. Sci. USA 105, 394–398 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. USA 107, 11163–11170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bushnell, I.W.R. Mother's face recognition in newborn infants: learning and memory. Infant Child Dev. 10, 67–74 (2001).

    Google Scholar 

  47. Hebb, D.O. The Organization of Behavior; a Neuropsychological Theory (Wiley, 1949).

  48. Livingstone, M.S. Ocular dominance columns in New World monkeys. J. Neurosci. 16, 2086–2096 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wiesel, T.N. & Hubel, D.H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040 (1965).

    CAS  PubMed  Google Scholar 

  50. Blasdel, G., Obermayer, K. & Kiorpes, L. Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys. Vis. Neurosci. 12, 589–603 (1995).

    CAS  PubMed  Google Scholar 

  51. Willenbockel, V. et al. The SHINE toolbox for controlling low-level image properties. J. Vis. 10, 653 (2010).

    Google Scholar 

  52. Leite, F.P. et al. Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla. Neuroimage 16, 283–294 (2002).

    PubMed  Google Scholar 

  53. Vanduffel, W. et al. Visual-motion processing investigated using contrast agent-enhanced fMRI in awake, behaving monkeys. Neuron 32, 565–577 (2001).

    CAS  PubMed  Google Scholar 

  54. Wass, S.V., Smith, T.J. & Johnson, M.H. Parsing eye-tracking data of variable quality to provide accurate fixation-duration estimates in infants and adults. Behav. Res. Methods 45, 229–250 (2013).

    CAS  PubMed  Google Scholar 

  55. Kolster, H., Janssens, T., Orban, G.A. & Vanduffel, W. The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J. Neurosci. 34, 10168–10191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gandhi, S.P., Heeger, D.J. & Boynton, G.M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 3314–3319 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Martínez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat. Neurosci. 2, 364–369 (1999).

    PubMed  Google Scholar 

  58. Somers, D.C., Dale, A.M., Seiffert, A.E. & Tootell, R.B. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 1663–1668 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsao, D.Y., Moeller, S. & Freiwald, W.A. Comparing face patch systems in macaques and humans. Proc. Natl. Acad. Sci. USA 105, 19514–19519 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Logothetis, N.K., Guggenberger, H., Peled, S. & Pauls, J. Functional imaging of the monkey brain. Nat. Neurosci. 2, 555–562 (1999).

    CAS  PubMed  Google Scholar 

  61. Cox, R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    CAS  PubMed  Google Scholar 

  62. Friston, K.J., Frith, C.D., Turner, R. & Frackowiak, R.S. Characterizing evoked hemodynamics with fMRI. Neuroimage 2, 157–165 (1995).

    CAS  PubMed  Google Scholar 

  63. Van Essen, D.C. et al. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Schapiro and D. Tsao for comments on the manuscript. This work was supported by US National Institutes of Health (NIH) grants R01EY25670 (M.S.L.), R01EY16187 (M.S.L.), F32EY24187 (J.L.V.), and P30EY12196 (M.S.L.), and a William Randolph Hearst Fellowship (M.J.A.). This research was carried out in part at the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging Technologies, a P41 Biotechnology Resource Grant (P41EB015896) supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, and a NIH Shared Instrumentation Grant (S10RR021110).

Author information

Authors and Affiliations

Authors

Contributions

All authors scanned and reared the monkeys; P.F.S. trained the monkeys; M.S.L., M.J.A., and P.F.S. analyzed the data; and M.S.L. wrote the paper.

Corresponding author

Correspondence to Margaret S Livingstone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Subsets of the images used for the scan sessions in Figures 1 & 2.

The stimuli were single large (~10 degrees across) images of monkey faces, familiar objects, monkey hands, or gloved human hands on a pink-noise background; each image subtended 20 x 20 degrees of visual angle.

Supplementary Figure 2 Analysis of gaze direction during stimulus blocks included in analysis.

(top left) Percent of block time that each monkey spent looking within 5° of the central fixation spot during stimulus-presentation blocks accepted for analysis for each category for each scan session, as indicated; different symbols indicate different monkeys, as in Figure 2c legend. (top right) Averages of all images from each category with 5° radius indicated in white. (bottom) Heat maps showing normalized and smoothed average total gaze time at each location on the screen averaged over accepted blocks for each category for example scan sessions from each monkey; maps are overlain on darkened examples of images from that category. Even for session B6 295, which had the lowest percent fixation, the gaze pattern was similar between categories and to that of other monkeys. Slight differences in centering of gaze are due to differences in calibration between sessions. Monitoring gaze direction in the scanner was less accurate than in the free-viewing situation because of longer eye-to-camera distance and less optimal camera angle.

Supplementary Figure 3 Average percent signal change in the same CIT and AIT ROIs as in Figure 2.

Percent signal change to faces (red), hands (green), or objects (blue) as a function of ventrolateral to dorsomedial distance along an anatomically defined CIT ROI (upper graphs) or an AIT ROI (lower graphs) extending from the crown of the lower lip of the STS to the upper bank of the STS (dotted outlines on the B5 face map in Figure 2). Shading indicates sem. Data were averaged over all sessions and both hemispheres of all three control monkeys that were scanned multiple times (left) and all three face-deprived monkeys (right). Activations were averaged across the AP dimension of the ROI to give an average response as a function of mediolateral location.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 898 kb)

Life Sciences Reporting Summary (PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcaro, M., Schade, P., Vincent, J. et al. Seeing faces is necessary for face-domain formation. Nat Neurosci 20, 1404–1412 (2017). https://doi.org/10.1038/nn.4635

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing