Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation

Abstract

Independent evidence associates β-amyloid pathology with both non-rapid eye movement (NREM) sleep disruption and memory impairment in older adults. However, whether the influence of β-amyloid pathology on hippocampus-dependent memory is, in part, driven by impairments of NREM slow wave activity (SWA) and associated overnight memory consolidation is unknown. Here we show that β-amyloid burden in medial prefrontal cortex (mPFC) correlates significantly with the severity of impairment in NREM SWA generation. Moreover, reduced NREM SWA generation was further associated with impaired overnight memory consolidation and impoverished hippocampal-neocortical memory transformation. Furthermore, structural equation models revealed that the association between mPFC β-amyloid pathology and impaired hippocampus-dependent memory consolidation was not direct, but instead statistically depended on the intermediary factor of diminished NREM SWA. By linking β-amyloid pathology with impaired NREM SWA, these data implicate sleep disruption as a mechanistic pathway through which β-amyloid pathology may contribute to hippocampus-dependent cognitive decline in the elderly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aβ, NREM SWA and memory retention measures in three sample subjects.
Figure 2: Associations between Aβ, NREM SWA and memory retention measures.
Figure 3: Associations between NREM SWA, retrieval-related hippocampus activation and memory retention.
Figure 4: Path models linking Aβ, NREM SWA, retrieval-related hippocampus activation and memory retention.

Similar content being viewed by others

References

  1. Boyle, P.A. et al. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann. Neurol. 74, 478–489 (2013).

    Article  PubMed  Google Scholar 

  2. Buckner, R.L. et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jack, C.R. Jr. et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sepulcre, J., Sabuncu, M.R., Becker, A., Sperling, R. & Johnson, K.A. In vivo characterization of the early states of the amyloid-beta network. Brain 136, 2239–2252 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Spires-Jones, T.L. & Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron 82, 756–771 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mormino, E.C. et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 132, 1310–1323 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Oh, H. & Jagust, W.J. Frontotemporal network connectivity during memory encoding is increased with aging and disrupted by beta-amyloid. J. Neurosci. 33, 18425–18437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Backhaus, J. et al. Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep. Learn. Mem. 14, 336–341 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Carrier, J. et al. Sleep slow wave changes during the middle years of life. Eur. J. Neurosci. 33, 758–766 (2011).

    Article  PubMed  Google Scholar 

  10. Dijk, D.J., Beersma, D.G. & van den Hoofdakker, R.H. All night spectral analysis of EEG sleep in young adult and middle-aged male subjects. Neurobiol. Aging 10, 677–682 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Mander, B.A. et al. Prefrontal atrophy, disrupted NREM slow waves, and impaired hippocampal-dependent memory in aging. Nat. Neurosci. 16, 357–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van Cauter, E., Leproult, R. & Plat, L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. J. Am. Med. Assoc. 284, 861–868 (2000).

    Article  CAS  Google Scholar 

  13. Westerberg, C.E. et al. Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. J. Int. Neuropsychol. Soc. 18, 490–500 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marshall, L., Helgadottir, H., Molle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Murphy, M. et al. Source modeling sleep slow waves. Proc. Natl. Acad. Sci. USA 106, 1608–1613 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hita-Yañez, E., Atienza, M. & Cantero, J.L. Polysomnographic and subjective sleep markers of mild cognitive impairment. Sleep 36, 1327–1334 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Prinz, P.N. et al. Sleep, EEG and mental function changes in senile dementia of the Alzheimer's type. Neurobiol. Aging 3, 361–370 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Liguori, C. et al. Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol. 71, 1498–1505 (2014).

    Article  PubMed  Google Scholar 

  19. Kang, J.E. et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roh, J.H. et al. Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer's disease pathology. Sci. Transl. Med. 4, 150ra122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Spira, A.P. et al. Self-reported sleep and beta-amyloid deposition in community-dwelling older adults. JAMA Neurol. 70, 1537–1543 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Chauvette, S., Seigneur, J. & Timofeev, I. Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75, 1105–1113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, H. Neural activity that predicts subsequent memory and forgetting: a meta-analysis of 74 fMRI studies. Neuroimage 54, 2446–2461 (2011).

    Article  PubMed  Google Scholar 

  25. Riedner, B.A. et al. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30, 1643–1657 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24 (suppl. D): 5–12 (2002).

    PubMed  Google Scholar 

  27. Buzsáki, G. The hippocampo-neocortical dialogue. Cereb. Cortex 6, 81–92 (1996).

    Article  PubMed  Google Scholar 

  28. Frankland, P.W. & Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Takashima, A. et al. Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proc. Natl. Acad. Sci. USA 103, 756–761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walker, M.P. The role of sleep in cognition and emotion. Ann. NY Acad. Sci. 1156, 168–197 (2009).

    Article  PubMed  Google Scholar 

  32. Stage, F.K., Carter, H.C. & Nora, A. Path analysis: an introduction and analysis of a decade of research. J. Educ. Res. 98, 5–12 (2004).

    Article  Google Scholar 

  33. Bozdogan, H. Model selection and Akaike information criterion (Aic) — the general-theory and its analytical extensions. Psychometrika 52, 345–370 (1987).

    Article  Google Scholar 

  34. Kline, R.B. Principles and Practice of Structural Equation Modeling (Guilford, New York, 2011).

  35. Raftery, A.E. Bayesian model selection in social research. Sociol. Methodol. 25, 111–163 (1995).

    Article  Google Scholar 

  36. Steriade, M., Contreras, D., Curro Dossi, R. & Nunez, A. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13, 3284–3299 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steriade, M., Nunez, A. & Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kurup, P. et al. Abeta-mediated NMDA receptor endocytosis in Alzheimer's disease involves ubiquitination of the tyrosine phosphatase STEP61. J. Neurosci. 30, 5948–5957 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Snyder, E.M. et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8, 1051–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Cavdar, S. et al. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat. J. Anat. 212, 249–256 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ooms, S. et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol. 71, 971–977 (2014).

    Article  PubMed  Google Scholar 

  42. Ju, Y.E., Lucey, B.P. & Holtzman, D.M. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Cricco, M., Simonsick, E.M. & Foley, D.J. The impact of insomnia on cognitive functioning in older adults. J. Am. Geriatr. Soc. 49, 1185–1189 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Yaffe, K. et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. J. Am. Med. Assoc. 306, 613–619 (2011).

    CAS  Google Scholar 

  45. Lim, A.S. et al. Modification of the relationship of the apolipoprotein E epsilon4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurol. 70, 1544–1551 (2013).

    Article  PubMed  Google Scholar 

  46. Brett, M., Anton, J.L., Valabregue, R. & Poline, J.B. Region of interest analysis using an SPM toolbox [abstract]. NeuroImage 16 (2, suppl. 1): 497 (2002).

    Google Scholar 

  47. Mander, B.A. et al. Impaired prefrontal sleep spindle regulation of hippocampal-dependent learning in older adults. Cereb. Cortex 24, 3301–3309 (2014).

    Article  PubMed  Google Scholar 

  48. Yesavage, J.A. et al. Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17, 37–49 (1982–1983).

  49. Folstein, M.F., Folstein, S.E. & McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    Article  CAS  PubMed  Google Scholar 

  50. Delis, D., Kramer, J., Kaplan, E. & Ober, B. California Verbal Learning Test (The Psychological Corporation, San Antonio, Texas, USA, 2000).

  51. Wechsler, D. Wechsler Memory Scale—Revised (The Psychological Corporation, San Antonio, Texas, USA, 1987).

  52. Reitan, R.M. Validity of the trail-making test as an indication of organic brain damage. Percept. Mot. Skills 8, 271–276 (1958).

    Article  Google Scholar 

  53. Zec, R.F. The Stroop color-word test: a paradigm for procedural learning. Arch. Clin. Neuropsychol. 1, 274–275 (1986).

    Article  Google Scholar 

  54. Young, T., Peppard, P.E. & Gottlieb, D.J. Epidemiology of obstructive sleep apnea: a population health perspective. Am. J. Respir. Crit. Care Med. 165, 1217–1239 (2002).

    Article  PubMed  Google Scholar 

  55. Tan, X., Campbell, I.G. & Feinberg, I. Internight reliability and benchmark values for computer analyses of non-rapid eye movement (NREM) and REM EEG in normal young adult and elderly subjects. Clin. Neurophysiol. 112, 1540–1552 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Zheng, H. et al. Sources of variability in epidemiological studies of sleep using repeated nights of in-home polysomnography: SWAN Sleep Study. J. Clin. Sleep Med. 8, 87–96 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. Cohen, D.A. & Robertson, E.M. Preventing interference between different memory tasks. Nat. Neurosci. 14, 953–955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jack, C.R. Jr. et al. Brain beta-amyloid load approaches a plateau. Neurology 80, 890–896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Villemagne, V.L. et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Elman, J.A. et al. Neural compensation in older people with brain amyloid-beta deposition. Nat. Neurosci. 17, 1316–1318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oh, H., Madison, C., Haight, T.J., Markley, C. & Jagust, W.J. Effects of age and beta-amyloid on cognitive changes in normal elderly people. Neurobiol. Aging 33, 2746–2755 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Desikan, R.S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  63. Bradshaw, E.M. et al. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nat. Neurosci. 16, 848–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hedden, T. et al. Cognitive profile of amyloid burden and white matter hyperintensities in cognitively normal older adults. J. Neurosci. 32, 16233–16242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hedden, T. et al. Failure to modulate attentional control in advanced aging linked to white matter pathology. Cereb. Cortex 22, 1038–1051 (2012).

    Article  PubMed  Google Scholar 

  66. Lieberman, M.D. & Cunningham, W.A. Type I and type II error concerns in fMRI research: re-balancing the scale. Soc. Cogn. Affect. Neurosci. 4, 423–428 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lancaster, J.L. et al. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28, 1194–1205 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rechtschaffen, A. & Kales, A. A Manual of Standardized Terminology, Techniques and Scoring: System of Sleep Stages in Human Subjects (UCLA Brain Information Services, Los Angeles, 1968).

  69. Mander, B.A., Santhanam, S., Saletin, J.M. & Walker, M.P. Wake deterioration and sleep restoration of human learning. Curr. Biol. 21, R183–R184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saletin, J.M., van der Helm, E. & Walker, M.P. Structural brain correlates of human sleep oscillations. Neuroimage 83, 658–668 (2013).

    Article  PubMed  Google Scholar 

  71. Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Phil. Trans. R. Soc. Lond. B 356, 1293–1322 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Baquirin, M. Belshe, M. Bhatter, M. Binod, S. Bowditch, C. Dang, J. Gupta, A. Hayenga, D. Holzman, A. Horn, E. Hur, J. Jeng, S. Kumar, J. Lindquist, C. Markeley, E. Mormino, M. Nicholas, S. Rashidi, M. Shonman, L. Zhang and A. Zhu for their assistance; A. Mander for his aid in task design; and M. Rubens and A. Gazzaley for use of their aging template brain. This work was supported by awards R01-AG031164 (M.P.W.), R01-AG034570 (W.J.J.) and F32-AG039170 (B.A.M.) from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

B.A.M. designed the study, conducted the experiments, analyzed the data and wrote the manuscript. S.M.M. aided in data analysis and manuscript preparation. J.W.V. aided in data collection, analysis and manuscript preparation. V.R. aided in data analysis and manuscript preparation. B.L. aided in study screening procedures and manuscript preparation. J.M.S. provided data analytic tools and aided in data analysis and manuscript preparation. S.A.-I. aided in study design and manuscript preparation. W.J.J. provided the subject pool and data analytic tools and aided in study design, PET data analysis and manuscript preparation. M.P.W. designed the study, aided in data analysis and wrote the manuscript.

Corresponding authors

Correspondence to Bryce A Mander or Matthew P Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Correlations between NREM spectra and Aβ and hippocampus activation.

Correlations between NREM SWS spectral power in 1Hz bins (0.6-50Hz) and natural log of mPFC PIB DVR (a) and next-day retrieval-related hippocampal activation (b). Shaded area represents the a priori SWA frequency range (0.6-4Hz) where significant effects presented in the manuscript were detected. No other frequency bin demonstrated significant FDR corrected effects. * denotes region where significant effects were detected. Dashed line denotes a correlation of 0.

Supplementary Figure 2 Source localization NREM slow waves 0.6–1 Hz detected at CZ and FZ derivations.

Topographic plot of mean NREM SWA 0.6-1Hz across all participants (left). Medial prefrontal cortex (mPFC) EEG ROI, defined as CZ & FZ derivations, is outlined in black. Slow waves 0.6-1Hz were detected using an established algorithm25, and were sourced to mPFC (right) using sLORETA software26.

Supplementary Figure 3 Association between hippocampus activation and NREM SWA at a lower statistical threshold.

Negative association between proportion of CZ and FZ NREM SWA 0.6-1Hz and retrieval-related activation (Hits-Correct Rejections) was detected bilaterally within an anatomical hippocampal ROI at a lower statistical threshold (P<0.025 uncorrected). Peak effects were detected in the right hippocampus at [x = 22, y = −7, z = −17] and in the left hippocampus at [x = −24, y = −16, z = −17].

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 500 kb)

Supplementary Methods Checklist (PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mander, B., Marks, S., Vogel, J. et al. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci 18, 1051–1057 (2015). https://doi.org/10.1038/nn.4035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing