Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visual map development depends on the temporal pattern of binocular activity in mice

Abstract

Binocular competition is thought to drive eye-specific segregation in the developing visual system, potentially through Hebbian synaptic learning rules that are sensitive to correlations in afferent activity. Altering retinal activity can disrupt eye-specific segregation, but little is known about the temporal features of binocular activity that modulate visual map development. We used optogenetic techniques to directly manipulate retinal activity in vivo and identified a critical period before eye opening in mice when specific binocular features of retinal activity drive visual map development. Synchronous activation of both eyes disrupted segregation, whereas asynchronous stimulation enhanced segregation. The optogenetic stimulus applied was spatially homogenous; accordingly, retinotopy of ipsilateral projections was markedly perturbed, but contralateral retinotopy was unaffected or even improved. These results provide direct evidence that the synchrony and precise temporal pattern of binocular retinal activity during a critical period in development regulates eye-specific segregation and retinotopy in the developing visual system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ChR2-expressing retinal ganglion cells (RGCs) are activated with high temporal precision with blue light both in vitro and in vivo.
Figure 2: In vivo Ca2+ imaging demonstrates that most superior colliculus neurons respond to optogenetic stimuli before eye opening.
Figure 3: Synchronous but not asynchronous stimulation of both eyes disrupts eye-specific segregation in the superior colliculus.
Figure 4: Binocular stimulation asynchronous by as much as 100 ms disturbs eye segregation.
Figure 5: Synchronous stimulation disrupted eye segregation and asynchronous stimulation improved eye segregation during development in AAV-ChR2 treated mice.
Figure 6: Synchronous stimulation disrupts and asynchronous stimulation improves eye-specific segregation in ChR2;Chrnb2−/− mice.
Figure 7: Synchronous stimulation disrupts eye segregation in the dLGN.
Figure 8: Chronic stimulation of ChR2-expressing RGCs disrupts retinotopy of ipsilateral RGCs but improves retinotopy of contralateral RGCs.

Similar content being viewed by others

References

  1. Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467–471 (1976).

    Article  CAS  Google Scholar 

  2. Shatz, C.J. The prenatal development of the cat's retinogeniculate pathway. J. Neurosci. 3, 482–499 (1983).

    Article  CAS  Google Scholar 

  3. Feldheim, D.A. & O'Leary, D.D. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb. Perspect. Biol. 2, a001768 (2010).

    Article  CAS  Google Scholar 

  4. Chapman, B. Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287, 2479–2482 (2000).

    Article  CAS  Google Scholar 

  5. Demas, J. et al. Failure to maintain eye-specific segregation in nob, a mutant with abnormally patterned retinal activity. Neuron 50, 247–259 (2006).

    Article  CAS  Google Scholar 

  6. Koch, S.M. et al. Pathway-specific genetic attenuation of glutamate release alters select features of competition-based visual circuit refinement. Neuron 71, 235–242 (2011).

    Article  CAS  Google Scholar 

  7. Huberman, A.D., Feller, M.B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).

    Article  CAS  Google Scholar 

  8. Hayakawa, I. & Kawasaki, H. Rearrangement of retinogeniculate projection patterns after eye-specific segregation in mice. PLoS ONE 5, e11001 (2010).

    Article  Google Scholar 

  9. Stellwagen, D. & Shatz, C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002).

    Article  CAS  Google Scholar 

  10. Mu, Y. & Poo, M.-m. Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system. Neuron 50, 115–125 (2006).

    Article  CAS  Google Scholar 

  11. Butts, D.A., Kanold, P.O. & Shatz, C.J.A. Burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLoS Biol. 5, e61 (2007).

    Article  Google Scholar 

  12. Shah, R.D. & Crair, M.C. Retinocollicular synapse maturation and plasticity are regulated by correlated retinal waves. J. Neurosci. 28, 292–303 (2008).

    Article  CAS  Google Scholar 

  13. Butts, D.A. & Kanold, P.O. The applicability of spike time dependent plasticity to development. Front. Synaptic Neurosci. 2, 30 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Meister, M., Wong, R.O., Baylor, D.A. & Shatz, C.J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).

    Article  CAS  Google Scholar 

  15. Moody, W.J. & Bosma, M.M. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol. Rev. 85, 883–941 (2005).

    Article  CAS  Google Scholar 

  16. Stryker, M.P. & Strickland, S.L. Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity. Invest. Ophthalmol. Vis. Sci. 25 (suppl.): 278 (1984).

    Google Scholar 

  17. Altmann, L., Luhmann, H.J., Greuel, J.M. & Singer, W. Functional and neuronal binocularity in kittens raised with rapidly alternating monocular occlusion. J. Neurophysiol. 58, 965–980 (1987).

    Article  CAS  Google Scholar 

  18. Crair, M.C., Horton, J.C., Antonini, A. & Stryker, M.P. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J. Comp. Neurol. 430, 235–249 (2001).

    Article  CAS  Google Scholar 

  19. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  20. Cardin, J.A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  Google Scholar 

  21. Wang, H. et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104, 8143–8148 (2007).

    Article  CAS  Google Scholar 

  22. Johnson, J. et al. Melanopsin-dependent light avoidance in neonatal mice. Proc. Natl. Acad. Sci. USA 107, 17374–17378 (2010).

    Article  CAS  Google Scholar 

  23. Berson, D.M., Dunn, F.A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    Article  CAS  Google Scholar 

  24. Thyagarajan, S. et al. Visual function in mice with photoreceptor degeneration and transgenic expression of Channelrhodopsin 2 in ganglion cells. J. Neurosci. 30, 8745–8758 (2010).

    Article  CAS  Google Scholar 

  25. Badea, T.C., Cahill, H., Ecker, J., Hattar, S. & Nathans, J. Distinct roles of transcription factors Brn3a and Brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61, 852–864 (2009).

    Article  CAS  Google Scholar 

  26. Ecker, J.L. et al. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67, 49–60 (2010).

    Article  CAS  Google Scholar 

  27. Godement, P., Salaün, J. & Imbert, M. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230, 552–575 (1984).

    Article  CAS  Google Scholar 

  28. Xu, H.-P. et al. An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 70, 1115–1127 (2011).

    Article  CAS  Google Scholar 

  29. Butts, D.A. & Rokhsar, D.S. The information content of spontaneous retinal waves. J. Neurosci. 21, 961–973 (2001).

    Article  CAS  Google Scholar 

  30. Chandrasekaran, A.R., Plas, D.T., Gonzalez, E. & Crair, M.C. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse. J. Neurosci. 25, 6929–6938 (2005).

    Article  CAS  Google Scholar 

  31. Muir-Robinson, G., Hwang, B.J. & Feller, M.B. Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci. 22, 5259–5264 (2002).

    Article  CAS  Google Scholar 

  32. Pfeiffenberger, C., Yamada, J. & Feldheim, D.A. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J. Neurosci. 26, 12873–12884 (2006).

    Article  CAS  Google Scholar 

  33. Torborg, C.L., Hansen, K.A. & Feller, M.B. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat. Neurosci. 8, 72–78 (2005).

    Article  CAS  Google Scholar 

  34. Tritsch, N.X., Yi, E., Gale, J.E., Glowatzki, E. & Bergles, D.E. The origin of spontaneous activity in the developing auditory system. Nature 450, 50–55 (2007).

    Article  CAS  Google Scholar 

  35. Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nat. Neurosci. 3, 452–459 (2000).

    Article  CAS  Google Scholar 

  36. Watt, A.J. et al. Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat. Neurosci. 12, 463–473 (2009).

    Article  CAS  Google Scholar 

  37. Kastanenka, K.V. & Landmesser, L.T. In vivo activation of Channelrhodopsin-2 reveals that normal patterns of spontaneous activity are required for motoneuron guidance and maintenance of guidance molecules. J. Neurosci. 30, 10575–10585 (2010).

    Article  CAS  Google Scholar 

  38. Vislay-Meltzer, R.L., Kampff, A.R. & Engert, F. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system. Neuron 50, 101–114 (2006).

    Article  CAS  Google Scholar 

  39. Demas, J.A., Payne, H. & Cline, H.T. Vision drives correlated activity without patterned spontaneous activity in developing Xenopus retina. Dev. Neurobiol. 10.1002/dneu.20880 (2011).

  40. Kerschensteiner, D. & Wong, R.O.L. A precisely timed asynchronous pattern of ON and OFF retinal ganglion cell activity during propagation of retinal waves. Neuron 58, 851–858 (2008).

    Article  CAS  Google Scholar 

  41. Dan, Y. & Poo, M.-M. Spike timing-dependent plasticity: from synapse to perception. Physiol. Rev. 86, 1033–1048 (2006).

    Article  Google Scholar 

  42. Weliky, M. & Katz, L.C. Disruption of orientation tuning visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).

    Article  CAS  Google Scholar 

  43. Xu, H.-P. et al. The immune protein CD3 is required for normal development of neural circuits in the retina. Neuron 65, 503–515 (2010).

    Article  CAS  Google Scholar 

  44. Dhande, O.S. et al. Development of single retinofugal axon arbors in normal and Chrnb2 knock-out mice. J. Neurosci. 31, 3384–3399 (2011).

    Article  CAS  Google Scholar 

  45. Huberman, A.D. et al. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59, 425–438 (2008).

    Article  CAS  Google Scholar 

  46. Faguet, J., Maranhao, B., Smith, S.L. & Trachtenberg, J.T. Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity. J. Neurophysiol. 101, 855–861 (2009).

    Article  Google Scholar 

  47. Petros, T.J., Rebsam, A. & Mason, C.A. Retinal axon growth at the optic chiasm: to cross or not to cross. Annu. Rev. Neurosci. 31, 295–315 (2008).

    Article  CAS  Google Scholar 

  48. Crair, M.C., Gillespie, D.C. & Stryker, M.P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  49. Huberman, A.D., Speer, C.M. & Chapman, B. Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in V1. Neuron 52, 247–254 (2006).

    Article  CAS  Google Scholar 

  50. Swindell, E.C. et al. Rx-Cre, a tool for inactivation of gene expression in the developing retina. Genesis 44, 361–363 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Crair laboratory for comments on the manuscript, J. Cardin and M. Higley for experimental guidance and Y. Zhang for technical help. This work was supported by US National Institutes of Health grants P30 EY000785, R01 EY015788 and R01 EY015788S to M.C.C. and by a Research to Prevent Blindness Challenge Grant to the Department of Ophthalmology & Visual Sciences. J.Z. was supported by a Brown-Coxe Fellowship. M.C.C. also thanks the family of W. Ziegler III for their support.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and M.C.C. designed the experiments. J.Z. conducted the stimulation experiments and analyzed the anatomical data. J.A. and J.Z. conducted the calcium imaging experiments and analyzed the data. H.-P.X. and J.Z. conducted the multielectrode array experiments and analyzed the data. J.Z. and M.C.C. wrote the manuscript.

Corresponding author

Correspondence to Michael C Crair.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Ackman, J., Xu, HP. et al. Visual map development depends on the temporal pattern of binocular activity in mice. Nat Neurosci 15, 298–307 (2012). https://doi.org/10.1038/nn.3007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing