Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Deciphering lipid structures based on platform-independent decision rules

Abstract

We achieve automated and reliable annotation of lipid species and their molecular structures in high-throughput data from chromatography-coupled tandem mass spectrometry using decision rule sets embedded in Lipid Data Analyzer (LDA; http://genome.tugraz.at/lda2). Using various low- and high-resolution mass spectrometry instruments with several collision energies, we proved the method's platform independence. We propose that the software's reliability, flexibility, and ability to identify novel lipid molecular species may now render current state-of-the-art lipid libraries obsolete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tandem mass spectra of lipid molecular species depend on platform and collision energy.

Similar content being viewed by others

References

  1. Wenk, M.R. Cell 143, 888–895 (2010).

    Article  CAS  Google Scholar 

  2. Quehenberger, O. & Dennis, E.A. N. Engl. J. Med. 365, 1812–1823 (2011).

    Article  CAS  Google Scholar 

  3. Dove, A. Science 347, 788–790 (2015).

    Article  Google Scholar 

  4. Liebisch, G. et al. J. Lipid Res. 54, 1523–1530 (2013).

    Article  CAS  Google Scholar 

  5. Song, H., Hsu, F.F., Ladenson, J. & Turk, J. J. Am. Soc. Mass Spectrom. 18, 1848–1858 (2007).

    Article  CAS  Google Scholar 

  6. Taguchi, R. & Ishikawa, M. J. Chromatogr. A 1217, 4229–4239 (2010).

    Article  CAS  Google Scholar 

  7. Kind, T. et al. Nat. Methods 10, 755–758 (2013).

    Article  CAS  Google Scholar 

  8. Hsu, F.F. & Turk, J. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 2673–2695 (2009).

    Article  CAS  Google Scholar 

  9. Sud, M. et al. Nucleic Acids Res. 35, D527–D532 (2007).

    Article  CAS  Google Scholar 

  10. Degtyarenko, K. et al. Nucleic Acids Res. 36, D344–D350 (2008).

    Article  CAS  Google Scholar 

  11. Wishart, D.S. et al. Nucleic Acids Res. 37, D603–D610 (2009).

    Article  CAS  Google Scholar 

  12. Jewison, T. et al. Nucleic Acids Res. 40, D815–D820 (2012).

    Article  CAS  Google Scholar 

  13. Hartler, J. et al. Bioinformatics 27, 572–577 (2011).

    Article  CAS  Google Scholar 

  14. Holčapek, M., Jandera, P., Zderadička, P. & Hrubá, L. J. Chromatogr. A 1010, 195–215 (2003).

    Article  Google Scholar 

  15. Han, X., Yang, K. & Gross, R.W. Mass Spectrom. Rev. 31, 134–178 (2012).

    Article  CAS  Google Scholar 

  16. Herzog, R. et al. PLoS One 7, e29851 (2012).

    Article  CAS  Google Scholar 

  17. Yang, K., Cheng, H., Gross, R.W. & Han, X. Anal. Chem. 81, 4356–4368 (2009).

    Article  CAS  Google Scholar 

  18. Husen, P. et al. PLoS One 8, e79736 (2013).

    Article  CAS  Google Scholar 

  19. Cajka, T. & Fiehn, O. Trends Analyt. Chem. 61, 192–206 (2014).

    Article  CAS  Google Scholar 

  20. Liebisch, G., Ejsing, C.S. & Ekroos, K. Clin. Chem. 61, 1542–1544 (2015).

    Article  CAS  Google Scholar 

  21. Murphy, R.C. & Axelsen, P.H. Mass Spectrom. Rev. 30, 579–599 (2011).

    Article  CAS  Google Scholar 

  22. Stein, S.E. & Scott, D.R. J. Am. Soc. Mass Spectrom. 5, 859–866 (1994).

    Article  CAS  Google Scholar 

  23. Fauland, A. et al. J. Lipid Res. 52, 2314–2322 (2011).

    Article  CAS  Google Scholar 

  24. Pedrioli, P.G. et al. Nat. Biotechnol. 22, 1459–1466 (2004).

    Article  CAS  Google Scholar 

  25. Chambers, M.C. et al. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  Google Scholar 

  26. Haug, K. et al. Nucleic Acids Res. 41, D781–D786 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support by the Austrian Science Fund (FWF Project Grant P26148 to G.G.T.) and the Austrian Ministry for Science, Research and Economy (HSRSM Grant Omics Center Graz, BioTechMed-Graz to G.G.T.) is gratefully acknowledged. M.J.O.W. and Q.Z. were funded by the BBSRC (UK; Grant BBS/E/B/000C0415). We thank R. Salek for his extensive help in MetaboLights upload. Furthermore, we thank AB Sciex, Agilent Technologies, Bruker Daltonics, and Thermo Fisher Scientific for providing permission to distribute the WiffReader SDK, the MassHunter DAC, the CompassXtract, and the MSFileReader libraries in the software.

Author information

Authors and Affiliations

Authors

Contributions

J.H., A.T., M.T., F.S., G.H., H.C.K., and G.G.T. designed the study. J.H., A.T., M.T., G.N.R., and H.C.K. designed the experiments. K.A.Z. and G.H. provided the biological samples. A.T., M.T., G.N.R., F.T., A.C.-G., M.R.W., A.F., C.E.W., A.M.A., O.Q., Q.Z., and M.J.O.W. designed and performed the mass spectrometric experiments. J.H. and A.Z. implemented the algorithm and the software. J.H., A.T., O.A.Z., and H.C.K. developed the decision rule sets. J.H. and A.T. benchmarked the algorithm in comparison to LipidBlast and prepared the spectral evidence for the novel species. J.H. and H.C.K. prepared and uploaded the data in MetaboLights. J.H., A.T., F.S., and G.G.T. wrote the manuscript in cooperation with all contributing authors.

Corresponding authors

Correspondence to Harald C Köfeler or Gerhard G Thallinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Notes 1–5 (PDF 7548 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Table 1

Overview of experiments performed and mass spectrometric platforms used. (XLSX 9 kb)

Supplementary Table 2

Lipid standards for control experiment 1. (XLSX 271 kb)

Supplementary Table 3

Isomeric pairs of lipid standards for different lipid subclasses applied in control experiment 2. (XLSX 29 kb)

Supplementary Table 4

Data evaluation of isomeric subclasses/adducts (control experiment 2). (XLSX 8 kb)

Supplementary Table 5

Pairs of structurally isomeric lipid standards for control experiment 3. (XLSX 48 kb)

Supplementary Table 6

Data evaluation of structurally isomeric pairs (described in Supplementary Table 5) measured in positive ion mode (control experiment 3). (XLSX 13 kb)

Supplementary Table 7

Data evaluation of structurally isomeric pairs (described in Supplementary Table 5) measured in negative ion mode (control experiment 3). (XLSX 12 kb)

Supplementary Table 8

Novel lipid molecular species identified in murine liver. (XLSX 14 kb)

Supplementary Table 9

Lipid species and lipid molecular species from murine liver detected by the seven MS/MS platforms and correctly identified by LDA. (XLSX 570 kb)

Supplementary Table 10

Overview on cross-platform species detection of seven MS/MS platforms based on murine liver samples. (XLSX 211 kb)

Supplementary Table 11

Sensitivity and positive predictive value (PPV) of LDA and LipidBlast (LB) in negative ion mode based on data acquired on Orbitrap Velos Pro in CID mode. (XLSX 9 kb)

Supplementary Table 12

Sensitivity and positive predictive value (PPV) of LDA and LipidBlast (LB) in positive ion mode based on data acquired on 4000 QTRAP. (XLSX 9 kb)

Supplementary Table 13

Sensitivity and positive predictive value (PPV) of LDA and LipidBlast (LB) in negative ion mode based on data acquired on 4000 QTRAP. (XLSX 9 kb)

Supplementary Table 14

Data evaluation of regio-isomeric pairs of chromatographically separated sn-1,2- and sn-1,3-diacylglycerols (DG). (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartler, J., Triebl, A., Ziegl, A. et al. Deciphering lipid structures based on platform-independent decision rules. Nat Methods 14, 1171–1174 (2017). https://doi.org/10.1038/nmeth.4470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing