Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Graded bandgap perovskite solar cells

A Retraction to this article was published on 23 January 2018

This article has been updated

Abstract

Organic–inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies1,2,3,4,5, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of 75% and high short-circuit current densities up to 42.1 mA cm−2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3−xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-sectional schematic and SEM images of perovskite cell with integral monolayer h-BN and graphene aerogel.
Figure 2: Photoluminescence (PL) spectra of perovskite cells with (W/) and without (W/O) monolayer h-BN or graphene aerogel (GA) components.
Figure 3: Response characteristic of perovskite cells, with and without h-BN and graphene aerogel.
Figure 4: Time evolution of perovskite cell performance, with steady state histogram and best-cell current-voltage response.

Similar content being viewed by others

Change history

  • 20 December 2017

    The authors of the study are retracting this Letter due to concerns about the reproducibility of the photovoltaic architecture performance presented, and with the interpretation of the data included in the manuscript and Supplementary Information. This Letter presented solar cells based on two perovskite layers separated by a monolayer of hexagonal boron nitride, deposited on graphene aerogel. The large variability of the current–voltage and spectral response of nominally identical devices and the rapid time evolution of key photovoltaic parameters undermine the authors' confidence in the conclusions that can be drawn at this stage regarding the performance of these architectures, and they therefore wish to retract the Letter. All the authors agree with the retraction.

References

  1. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  CAS  Google Scholar 

  2. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  CAS  Google Scholar 

  3. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015).

    Article  Google Scholar 

  4. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  Google Scholar 

  5. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    Article  CAS  Google Scholar 

  6. Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).

    Article  Google Scholar 

  7. Bailie, C. D. et al. Semi-transparent perovkite solar cells for tandems with silicon and CIGS. Energy Environ. Sci. 8, 956–963 (2015).

    Article  CAS  Google Scholar 

  8. Löper, P. et al. Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2015).

    Article  Google Scholar 

  9. Werner, J. et al. Sputtered rear electrode with broadband transparency for perovkite solar cells. Sol. Energy Mater. Sol. Cells 141, 407–413 (2015).

    Article  CAS  Google Scholar 

  10. Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015).

    Article  Google Scholar 

  11. Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9, 81–88 (2016).

    Article  CAS  Google Scholar 

  12. Jiang, F. et al. A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A 4, 1208–1213 (2016).

    Article  CAS  Google Scholar 

  13. Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. & Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photon. 8, 489–494 (2014).

    Article  CAS  Google Scholar 

  14. Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).

    Article  Google Scholar 

  15. Bernal, C. & Yang, K. First-principles hybrid functional study of the organic–inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3 . J. Phys. Chem. C 118, 24383–24388 (2014).

    Article  CAS  Google Scholar 

  16. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  Google Scholar 

  17. Liang, K., Mitzi, D. B. & Prikas, M. T. Synthesis and characterization of organic–inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998).

    Article  CAS  Google Scholar 

  18. Takahashi, Y. et al. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011).

    Article  CAS  Google Scholar 

  19. Li, H., Castelli, I. E., Thygesen, K. S. & Jacobsen, K. W. Strain sensitivity of band gaps of Sn-containing semiconductors. Phys. Rev. B 91, 045204 (2015).

    Article  Google Scholar 

  20. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  CAS  Google Scholar 

  21. He, M., Zheng, D., Wang, M., Lin, C. & Lin, Z. High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction. J. Mater. Chem. A 2, 5994–6003 (2014).

    Article  CAS  Google Scholar 

  22. Cai, B., Xing, Y., Yang, Z., Zhang, W. H. & Qiu, J. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 6, 1480–1485 (2013).

    Article  CAS  Google Scholar 

  23. De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  24. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  CAS  Google Scholar 

  25. Manser, J. S. & Kamat, P. V Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8, 737–743 (2014).

    Article  CAS  Google Scholar 

  26. Echendu, O. K., Fauzi, F., Weerasinghe, A. R. & Dharmadasa, I. M. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors. Thin Solid Films 556, 529–534 (2014).

    Article  CAS  Google Scholar 

  27. McCarthy, M. A. et al. Reorientation of the high mobility plane in pentacene-based carbon nanotube enabled vertical field effect transistors. ACS Nano 5, 291–298 (2010).

    Google Scholar 

  28. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  CAS  Google Scholar 

  29. Gibb, A. L. et al. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135, 6758–6761 (2013).

    Article  CAS  Google Scholar 

  30. Worsley, M. A. et al. Synthesis and characterization of highly crystalline graphene aerogels. ACS Nano 8, 11013–11022 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Lechene (A. Arias group) and D. Hellebusch, S. Hawks and N. Bronstein (P. Alivisatos group) for use of the solar simulator, J. Kim and C. Jin (F. Wang group) for PL measurements and discussions, E. Cardona (O. Dubon group) for XRD measurements, L. Leppert (J. Neaton group) for valuable discussions on investigation of bandgap alignment, and T. Moiai and K. Emery (National Renewable Energy Laboratory) for valuable technical discussions on calibration, JV measurements, and EQE measurements. This research was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under Contract No. DE-AC02-05CH11231, which provided for PL measurements under an LDRD award, and, within the sp2-bonded materials program (KC2207), for the design of the experiment and material characterization; the National Science Foundation under Grant 1542741, which provided for photovoltaic response characterization; and by the Office of Naval Research (MURI) under Grant N00014-16-1-2229, which provided for h-BN growth. This work was additionally supported by Lawrence Livermore National Laboratory under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344 through LDRD 13-LW-099, which provided for graphene aerogel synthesis. S.M.G. acknowledges support from the NSF Graduate Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

O.E., S.M.G., T.P., S.J.T. and A.Z. designed the experiments. O.E., S.M.G., T.P., S.J.T. and M.T.Z.T. carried out experiments. O.E., S.M.G., T.P., S.J.T., M.T.Z.T. and A.Z. contributed to analysing the data. O.E. and A.Z. wrote the paper, and all authors provided valuable feedback.

Corresponding author

Correspondence to Alex Zettl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergen, O., Gilbert, S., Pham, T. et al. Graded bandgap perovskite solar cells. Nature Mater 16, 522–525 (2017). https://doi.org/10.1038/nmat4795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing