Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tough bonding of hydrogels to diverse non-porous surfaces

Abstract

In many animals, the bonding of tendon and cartilage to bone is extremely tough (for example, interfacial toughness 800 J m−2; refs 1,2), yet such tough interfaces have not been achieved between synthetic hydrogels and non-porous surfaces of engineered solids3,4,5,6,7,8,9. Here, we report a strategy to design tough transparent and conductive bonding of synthetic hydrogels containing 90% water to non-porous surfaces of diverse solids, including glass, silicon, ceramics, titanium and aluminium. The design strategy is to anchor the long-chain polymer networks of tough hydrogels covalently to non-porous solid surfaces, which can be achieved by the silanation of such surfaces. Compared with physical interactions, the chemical anchorage results in a higher intrinsic work of adhesion and in significant energy dissipation of bulk hydrogel during detachment, which lead to interfacial toughness values over 1,000 J m−2. We also demonstrate applications of robust hydrogel–solid hybrids, including hydrogel superglues, mechanically protective hydrogel coatings, hydrogel joints for robotic structures and robust hydrogel–metal conductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A design strategy for tough bonding of hydrogels to diverse solids.
Figure 2: Experimental and modelling results on various types of hydrogel–solid bonding.
Figure 3: Performance of the tough bonding of hydrogels to various solids.
Figure 4: Novel applications of hydrogel–solid hybrids enabled by the tough bonding.

Similar content being viewed by others

References

  1. Bobyn, J., Wilson, G., MacGregor, D., Pilliar, R. & Weatherly, G. Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants. J. Biomed. Mater. Res. 16, 571–584 (1982).

    Article  CAS  Google Scholar 

  2. Moretti, M. et al. Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38, 1846–1854 (2005).

    Article  CAS  Google Scholar 

  3. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article  CAS  Google Scholar 

  4. Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    Article  CAS  Google Scholar 

  5. Henderson, K. J., Zhou, T. C., Otim, K. J. & Shull, K. R. Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43, 6193–6201 (2010).

    Article  CAS  Google Scholar 

  6. Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article  CAS  Google Scholar 

  7. Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature Mater. 12, 932–937 (2013).

    Article  CAS  Google Scholar 

  8. Kamata, H., Akagi, Y., Kayasuga-Kariya, Y., Chung, U.-i. & Sakai, T. “Nonswellable” hydrogel without mechanical hysteresis. Science 343, 873–875 (2014).

    Article  CAS  Google Scholar 

  9. Liu, M. et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517, 68–72 (2015).

    Article  CAS  Google Scholar 

  10. Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

    Article  CAS  Google Scholar 

  11. Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001).

    Article  CAS  Google Scholar 

  12. Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315, 487–490 (2007).

    Article  CAS  Google Scholar 

  13. Banerjee, I., Pangule, R. C. & Kane, R. S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690–718 (2011).

    Article  CAS  Google Scholar 

  14. Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006).

    Article  CAS  Google Scholar 

  15. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).

    Article  CAS  Google Scholar 

  16. Keplinger, C. et al. Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013).

    Article  CAS  Google Scholar 

  17. Yu, C. et al. Electronically programmable, reversible shape change in two-and three-dimensional hydrogel structures. Adv. Mater. 25, 1541–1546 (2013).

    Article  CAS  Google Scholar 

  18. Kurokawa, T., Furukawa, H., Wang, W., Tanaka, Y. & Gong, J. P. Formation of a strong hydrogel–porous solid interface via the double-network principle. Acta Biomater. 6, 1353–1359 (2010).

    Article  CAS  Google Scholar 

  19. Ahagon, A. & Gent, A. Effect of interfacial bonding on the strength of adhesion. J. Polym. Sci. 13, 1285–1300 (1975).

    CAS  Google Scholar 

  20. Gent, A. Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties? Langmuir 12, 4492–4496 (1996).

    Article  CAS  Google Scholar 

  21. Kaelble, D. Peel adhesion: Influence of surface energies and adhesive rheology. J. Adhes. 1, 102–123 (1969).

    Article  CAS  Google Scholar 

  22. Derail, C., Allal, A., Marin, G. & Tordjeman, P. Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61, 123–157 (1997).

    Article  CAS  Google Scholar 

  23. Sudre, G., Olanier, L., Tran, Y., Hourdet, D. & Creton, C. Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8, 8184–8193 (2012).

    Article  CAS  Google Scholar 

  24. Weissman, J. M., Sunkara, H. B., Albert, S. T. & Asher, S. A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959–963 (1996).

    Article  CAS  Google Scholar 

  25. Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    Article  CAS  Google Scholar 

  26. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    Article  CAS  Google Scholar 

  27. Lake, G. J. & Thomas, A. G. Strength of highly elastic materials. Proc. R. Soc. Lond. Ser. A 300, 108–119 (1967).

    Article  CAS  Google Scholar 

  28. Webber, R. E., Creton, C., Brown, H. R. & Gong, J. P. Large strain hysteresis and Mullins effect of tough double-network hydrogels. Macromolecules 40, 2919–2927 (2007).

    Article  CAS  Google Scholar 

  29. Tegelström, H. & Wyöni, P. I. Silanization of supporting glass plates avoiding fixation of polyacrylamide gels to glass cover plates. Electrophoresis 7, 99 (1986).

    Article  Google Scholar 

  30. Kendall, K. Thin-film peeling-the elastic term. J. Phys. D 8, 1449–1452 (1975).

    Article  Google Scholar 

  31. Ghatak, A., Chaudhury, M. K., Shenoy, V. & Sharma, A. Meniscus instability in a thin elastic film. Phys. Rev. Lett. 85, 4329–4332 (2000).

    Article  CAS  Google Scholar 

  32. Biggins, J. S., Saintyves, B., Wei, Z., Bouchaud, E. & Mahadevan, L. Digital instability of a confined elastic meniscus. Proc. Natl Acad. Sci. USA 110, 12545–12548 (2013).

    Article  CAS  Google Scholar 

  33. Ogden, R. & Roxburgh, D. A pseudo–elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. Ser. A 455, 2861–2877 (1999).

    Article  Google Scholar 

  34. Lin, S., Zhou, Y. & Zhao, X. Designing extremely resilient and tough hydrogels via delayed dissipation. Extreme Mech. Lett. 1, 70–75 (2014).

    Article  Google Scholar 

  35. Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4035–4040 (2015).

    Article  CAS  Google Scholar 

  36. Darnell, M. C. et al. Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34, 8042–8048 (2013).

    Article  CAS  Google Scholar 

  37. Nemir, S., Hayenga, H. N. & West, J. L. PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity. Biotechnol. Bioeng. 105, 636–644 (2010).

    Article  CAS  Google Scholar 

  38. Dugas, V. & Chevalier, Y. Surface hydroxylation and silane grafting on fumed and thermal silica. J. Colloid Interface Sci. 264, 354–361 (2003).

    Article  CAS  Google Scholar 

  39. Yoshida, W., Castro, R. P., Jou, J.-D. & Cohen, Y. Multilayer alkoxysilane silylation of oxide surfaces. Langmuir 17, 5882–5888 (2001).

    Article  CAS  Google Scholar 

  40. Muir, B. V., Myung, D., Knoll, W. & Frank, C. W. Grafting of cross-linked hydrogel networks to titanium surfaces. ACS Appl. Mater. Interfaces 6, 958–966 (2014).

    Article  CAS  Google Scholar 

  41. Cha, C. et al. Tailoring hydrogel adhesion to polydimethylsiloxane substrates using polysaccharide glue. Angew. Chem. Int. Ed. 52, 6949–6952 (2013).

    Article  CAS  Google Scholar 

  42. Stile, R. A., Barber, T. A., Castner, D. G. & Healy, K. E. Sequential robust design methodology and X-ray photoelectron spectroscopy to analyze the grafting of hyaluronic acid to glass substrates. J. Biomed. Mater. Res. 61, 391–398 (2002).

    Article  CAS  Google Scholar 

  43. Bai, Y. et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 105, 151903 (2014).

    Article  Google Scholar 

  44. Yang, C. H. et al. Ionic cable. Extreme Mech. Lett. 3, 59–65 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Wang and L. Griffith for their help on the cell viability test. This work is supported by ONR (No. N00014-14-1-0528), MIT Institute for Soldier Nanotechnologies and NSF (No. CMMI-1253495). H.Y. acknowledges the financial support from Samsung Scholarship. X.Z. acknowledges the supports from NIH (No. UH3TR000505) and MIT Materials Research Science and Engineering Center.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and H.Y. conceived the idea. H.Y., T.Z., S.L., G.A.P. and X.Z. designed the research. H.Y., S.L. and G.A.P. carried out the experiments and T.Z. performed the numerical simulation. H.Y., T.Z., S.L., G.A.P. and X.Z. analysed and interpreted the results. X.Z. drafted the manuscript and all authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Xuanhe Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2915 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 3536 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 3514 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 3643 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 18689 kb)

Supplementary Movie 5

Supplementary Movie 5 (MOV 28212 kb)

Supplementary Movie 6

Supplementary Movie 6 (MOV 17095 kb)

Supplementary Movie 7

Supplementary Movie 7 (MOV 5154 kb)

Supplementary Movie 8

Supplementary Movie 8 (MOV 2085 kb)

Supplementary Movie 9

Supplementary Movie 9 (MOV 1602 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuk, H., Zhang, T., Lin, S. et al. Tough bonding of hydrogels to diverse non-porous surfaces. Nature Mater 15, 190–196 (2016). https://doi.org/10.1038/nmat4463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing