Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis

Abstract

Uncoupling protein 1 (UCP1) plays a central role in nonshivering thermogenesis in brown fat; however, its role in beige fat remains unclear. Here we report a robust UCP1-independent thermogenic mechanism in beige fat that involves enhanced ATP-dependent Ca2+ cycling by sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) and ryanodine receptor 2 (RyR2). Inhibition of SERCA2b impairs UCP1-independent beige fat thermogenesis in humans and mice as well as in pigs, a species that lacks a functional UCP1 protein. Conversely, enhanced Ca2+ cycling by activation of α1- and/or β3-adrenergic receptors or the SERCA2b–RyR2 pathway stimulates UCP1-independent thermogenesis in beige adipocytes. In the absence of UCP1, beige fat dynamically expends glucose through enhanced glycolysis, tricarboxylic acid metabolism and pyruvate dehydrogenase activity for ATP-dependent thermogenesis through the SERCA2b pathway; beige fat thereby functions as a 'glucose sink' and improves glucose tolerance independently of body weight loss. Our study uncovers a noncanonical thermogenic mechanism through which beige fat controls whole-body energy homeostasis via Ca2+ cycling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UCP1 is dispensable for beige fat thermogenesis.
Figure 2: SERCA2b controls UCP1-independent thermogenesis in beige fat.
Figure 3: Enhanced Ca2+ cycling stimulates UCP1-independent thermogenesis in beige fat.
Figure 4: UCP1-independent mechanisms in beige fat are involved in the regulation of body weight and glucose metabolism in vivo.
Figure 5: Active glucose utilization occurs in Ucp1−/− beige fat through enhanced glycolysis and TCA metabolism.
Figure 6: The SERCA2–RyR2 pathway controls glucose utilization and thermogenesis in Ucp1−/− beige fat.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

Gene Expression Omnibus

References

  1. Golozoubova, V. et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15, 2048–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Nedergaard, J. et al. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim. Biophys. Acta 1504, 82–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kajimura, S., Spiegelman, B.M. & Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22, 546–559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shabalina, I.G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5, 1196–1203 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Okamatsu-Ogura, Y. et al. Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice. PLoS One 8, e84229 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cinti, S. The Adipose Organ (Editrice Kurtis, 1999).

  8. Petrovic, N. et al. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem. 285, 7153–7164 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Nedergaard, J. & Cannon, B. UCP1 mRNA does not produce heat. Biochim. Biophys. Acta 1831, 943–949 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Guerra, C., Koza, R.A., Yamashita, H., Walsh, K. & Kozak, L.P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest. 121, 96–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Shinoda, K. et al. Phosphoproteomics identifies CK2 as a negative regulator of beige adipocyte thermogenesis and energy expenditure. Cell Metab. 22, 997–1008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McDonald, M.E. et al. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell 160, 105–118 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vegiopoulos, A. et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328, 1158–1161 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156, 304–316 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ohno, H., Shinoda, K., Ohyama, K., Sharp, L.Z. & Kajimura, S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163–167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ukropec, J., Anunciado, R.P., Ravussin, Y., Hulver, M.W. & Kozak, L.P. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1−/− mice. J. Biol. Chem. 281, 31894–31908 (2006).

    CAS  PubMed  Google Scholar 

  19. Granneman, J.G., Burnazi, M., Zhu, Z. & Schwamb, L.A. White adipose tissue contributes to UCP1-independent thermogenesis. Am. J. Physiol. Endocrinol. Metab. 285, E1230–E1236 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Rowland, L.A., Bal, N.C., Kozak, L.P. & Periasamy, M. Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress. J. Biol. Chem. 290, 12282–12289 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bal, N.C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  PubMed  Google Scholar 

  24. Tripathi, S. et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujii, J. et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Quane, K.A. et al. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat. Genet. 5, 51–55 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collins, S. β-adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front. Endocrinol. (Lausanne) 2, 102 (2012).

    Google Scholar 

  29. Fedorenko, A., Lishko, P.V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bertholet, A.M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, S.C., Nuccitelli, R. & Pappone, P.A. Adrenergically activated Ca2+ increases in brown fat cells: effects of Ca2+, K+, and K channel block. Am. J. Physiol. 264, C217–C228 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Prestle, J. et al. Overexpression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptor–mediated Ca2+ leak from the sarcoplasmic reticulum and increases contractility. Circ. Res. 88, 188–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Gómez, A.M. et al. FKBP12.6 overexpression decreases Ca2+ spark amplitude but enhances [Ca2+]i transient in rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 287, H1987–H1993 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. Loughrey, C.M. et al. Over-expression of FK506-binding protein FKBP12.6 alters excitation–contraction coupling in adult rabbit cardiomyocytes. J. Physiol. (Lond.) 556, 919–934 (2004).

    Article  CAS  Google Scholar 

  35. Wehrens, X.H. et al. Protection from cardiac arrhythmia through ryanodine receptor–stabilizing protein calstabin2. Science 304, 292–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Santulli, G. et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J. Clin. Invest. 125, 1968–1978 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berg, F., Gustafson, U. & Andersson, L. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. PLoS Genet. 2, e129 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Denton, R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309–1316 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Marx, S.O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kramarova, T.V. et al. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J. 22, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Block, B.A. Thermogenesis in muscle. Annu. Rev. Physiol. 56, 535–577 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park, S.W., Zhou, Y., Lee, J., Lee, J. & Ozcan, U. Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc. Natl. Acad. Sci. USA 107, 19320–19325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tubbs, E. et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279–3294 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Arruda, A.P. et al. Chronic enrichment of hepatic endoplasmic reticulum–mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoneshiro, T. et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19, 1755–1760 (2011).

    Article  Google Scholar 

  47. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tiso, N. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Marks, A.R., Priori, S., Memmi, M., Kontula, K. & Laitinen, P.J. Involvement of the cardiac ryanodine receptor/calcium release channel in catecholaminergic polymorphic ventricular tachycardia. J. Cell. Physiol. 190, 1–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feketa, V.V., Balasubramanian, A., Flores, C.M., Player, M.R. & Marrelli, S.P. Shivering and tachycardic responses to external cooling in mice are substantially suppressed by TRPV1 activation but not by TRPM8 inhibition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1040–R1050 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soga, T. et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J. Biol. Chem. 281, 16768–16776 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Soga, T. et al. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal. Chem. 81, 6165–6174 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Soga, T. & Heiger, D.N. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 72, 1236–1241 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Chen at the University of Calgary for providing the RyR2 overexpression construct. We are also grateful to C. Paillart for his support in the CLAMS studies, Y. Seo for his support in [18F]FDG uptake assays, R. Zalpuri for technical assistance in electron microscope analysis, K. Nakamura for his advice in tissue temperature recording, and B.M. Spiegelman, E.T. Chouchani and L. Kazak for their feedback. This work was supported by the National Institutes of Health (DK97441 and DK108822), the Pew Charitable Trust and Japan Science and Technology Agency to S.K., and by Agency for Medical Research and Development–Core research for Revolutionary Science and Technology (AMED–CREST) from the Japan Agency for Medical Research and Development, CREST from the Japan Science and Technology Agency, and research funds from the Yamagata prefectural government and the city of Tsuruoka to T.S. We also acknowledge support from the University of California San Francisco (UCSF) Diabetes Endocrinology Research Center (DERC) (DK63720), the Yale University Mouse Metabolic Phenotyping Center (MMPC) (U2CDK059635) and DK40936. K.I. and K.T. are supported by the Manpei Suzuki Diabetes Foundation. Q.K. is supported by the China Scholarship Council (201506350063). T.Y. is supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (2610103). K.S. is supported by National Institutes of Health K99 grant (DK110426). X.L. is supported by China Postdoctoral Council (2014M551176).

Author information

Authors and Affiliations

Authors

Contributions

K.I. and S.K. conceived the study and designed experiments. K.I., Q.K., T.Y., Y.C., X. L., P.M., K.T. and S.K. performed experiments. J.P.C. performed mouse metabolic studies. H.M., M.H. and T.S. performed metabolomics. K.S. performed bioinformatics analyses. K.M.A. contributed pig cell line generation. K.I., Q.K., T.Y., J.P.C., T.S. and S.K. analyzed and interpreted the data. K.I. and S.K. wrote the manuscript. K.I., P.M. and S.K. edited the manuscript.

Corresponding author

Correspondence to Shingo Kajimura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures & Table

Supplementary Figures 1–12 & Supplementary Table 2 (PDF 14105 kb)

Life Sciences Reporting Summary

Life Sciences Reporting Summary (PDF 172 kb)

Supplementary Table 1

Metabolomics dataset of inguinal WAT (XLSX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, K., Kang, Q., Yoneshiro, T. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23, 1454–1465 (2017). https://doi.org/10.1038/nm.4429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing