Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of CBLB protects from lethal Candida albicans sepsis

Abstract

Fungal infections claim an estimated 1.5 million lives each year. Mechanisms that protect from fungal infections are still elusive. Recognition of fungal pathogens relies on C-type lectin receptors (CLRs) and their downstream signaling kinase SYK. Here we report that the E3 ubiquitin ligase CBLB controls proximal CLR signaling in macrophages and dendritic cells. We show that CBLB associates with SYK and ubiquitinates SYK, dectin-1, and dectin-2 after fungal recognition. Functionally, CBLB deficiency results in increased inflammasome activation, enhanced reactive oxygen species production, and increased fungal killing. Genetic deletion of Cblb protects mice from morbidity caused by cutaneous infection and markedly improves survival after a lethal systemic infection with Candida albicans. On the basis of these findings, we engineered a cell-permeable CBLB inhibitory peptide that protects mice from lethal C. albicans infections. We thus describe a key role for Cblb in the regulation of innate antifungal immunity and establish a novel paradigm for the treatment of fungal sepsis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cblb regulates antifungal immunity.
Figure 2: Cblb in immune cells protects against fungal pathology.
Figure 3: Cblb controls antifungal activities of dendritic cells and macrophages.
Figure 4: Increased CLR-mediated signaling in the absence of Cblb.
Figure 5: CBLB ubiquitinates SYK.
Figure 6: CBLB inhibition enhances antifungal immunity.

Similar content being viewed by others

Accession codes

Primary accessions

Proteomics Identifications Database

References

  1. Armstrong-James, D., Meintjes, G. & Brown, G.D. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol. 22, 120–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Ravikumar, S., Win, M.S. & Chai, L.Y. Optimizing outcomes in immunocompromised hosts: understanding the role of immunotherapy in invasive fungal diseases. Front. Microbiol. 6, 1322 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. Lanternier, F. et al. Primary immunodeficiencies underlying fungal infections. Curr. Opin. Pediatr. 25, 736–747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown, G.D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Marr, K.A. et al. Differential role of MyD88 in macrophage-mediated responses to opportunistic fungal pathogens. Infect. Immun. 71, 5280–5286 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramirez-Ortiz, Z.G. et al. Toll-like receptor 9–dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect. Immun. 76, 2123–2129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cambi, A. et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33, 532–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Netea, M.G. et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and toll-like receptors. J. Clin. Invest. 116, 1642–1650 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hardison, S.E. & Brown, G.D. C-type lectin receptors orchestrate antifungal immunity. Nat. Immunol. 13, 817–822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brown, G.D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Saijo, S. et al. Dectin-2 recognition of α-mannans and induction of TH17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, L.L. et al. C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Wells, C.A. et al. The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J. Immunol. 180, 7404–7413 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. van de Veerdonk, F.L. et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5, 329–340 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Ishikawa, E. et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J. Exp. Med. 206, 2879–2888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smeekens, S.P. et al. The classical CD14+CD16 monocytes, but not the patrolling CD14+CD16+ monocytes, promote TH17 responses to Candida albicans. Eur. J. Immunol. 41, 2915–2924 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Patel, D.D. & Kuchroo, V.K. TH17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity 43, 1040–1051 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Whibley, N. & Gaffen, S.L. Brothers in arms: TH17 and Treg responses in Candida albicans immunity. PLoS Pathog. 10, e1004456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mócsai, A., Ruland, J. & Tybulewicz, V.L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deng, Z. et al. Tyrosine phosphatase SHP-2 mediates C-type-lectin-receptor-induced activation of the kinase Syk and antifungal TH17 responses. Nat. Immunol. 16, 642–652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zwolanek, F. et al. The nonreceptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome. PLoS Pathog. 10, e1004525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gross, O. et al. Syk kinase signaling couples to the Nlrp3 inflammasome for antifungal host defense. Nature 459, 433–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Ruland, J. CARD9 signaling in the innate immune response. Ann. NY Acad. Sci. 1143, 35–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Chiang, Y.J. et al. Cbl-b regulates the CD28 dependence of T cell activation. Nature 403, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Loeser, S. & Penninger, J.M. The ubiquitin E3 ligase Cbl-b in T cell tolerance and tumor immunity. Cell Cycle 6, 2478–2485 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Paolino, M. et al. Essential role of E3 ubiquitin ligase activity in Cbl-b-regulated T cell functions. J. Immunol. 186, 2138–2147 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Paolino, M. et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507, 508–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qu, X. et al. Negative regulation of FcɛRI-mediated mast cell activation by a ubiquitin-protein ligase Cbl-b. Blood 103, 1779–1786 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Han, C. et al. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat. Immunol. 11, 734–742 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Wallner, S. et al. The role of the E3 ligase Cbl-b in murine dendritic cells. PLoS One 8, e65178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, J., Chiang, Y.J., Hodes, R.J. & Siraganian, R.P. Inactivation of c-Cbl or Cbl-b differentially affects signaling from the high-affinity IgE receptor. J. Immunol. 173, 1811–1818 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Sohn, H.W., Gu, H. & Pierce, S.K. Cbl-b negatively regulates B cell antigen receptor signaling in mature B cells through ubiquitination of the tyrosine kinase Syk. J. Exp. Med. 197, 1511–1524 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Igyártó, B.Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Drummond, R.A., Gaffen, S.L., Hise, A.G. & Brown, G.D. Innate defense against fungal pathogens. Cold Spring Harb. Perspect. Med. 5, a019620 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  36. Aratani, Y. et al. Relative contributions of myeloperoxidase and NADPH oxidase to the early host defense against pulmonary infections with Candida albicans and Aspergillus fumigatus. Med. Mycol. 40, 557–563 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Gringhuis, S.I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13, 246–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Qian, Q., Jutila, M.A., Van Rooijen, N. & Cutler, J.E. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J. Immunol. 152, 5000–5008 (1994).

    CAS  PubMed  Google Scholar 

  39. May, M.J. et al. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289, 1550–1554 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Zou, W., Reeve, J.L., Zhao, H., Ross, F.P. & Teitelbaum, S.L. Syk tyrosine 317 negatively regulates osteoclast function via the ubiquitin-protein isopeptide ligase activity of Cbl. J. Biol. Chem. 284, 18833–18839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yankee, T.M., Keshvara, L.M., Sawasdikosol, S., Harrison, M.L. & Geahlen, R.L. Inhibition of signaling through the B cell antigen receptor by the proto-oncogene product, c-Cbl, requires Syk tyrosine 317 and the c-Cbl phosphotyrosine-binding domain. J. Immunol. 163, 5827–5835 (1999).

    CAS  PubMed  Google Scholar 

  42. Glocker, E.O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng, J. et al. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur. J. Immunol. 45, 2834–2846 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. van der Graaf, C.A. et al. Candida-specific interferon-γ deficiency and toll-like receptor polymorphisms in patients with chronic mucocutaneous candidiasis. Neth. J. Med. 61, 365–369 (2003).

    CAS  PubMed  Google Scholar 

  45. Plantinga, T.S. et al. Human genetic susceptibility to Candida infections. Med. Mycol. 50, 785–794 (2012).

    Article  PubMed  Google Scholar 

  46. Plantinga, T.S. et al. Early stop polymorphism in human dectin-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49, 724–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Smeekens, S.P., van de Veerdonk, F.L., Kullberg, B.J. & Netea, M.G. Genetic susceptibility to Candida infections. EMBO Mol. Med. 5, 805–813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stevens, D.A. Advances in systemic antifungal therapy. Clin. Dermatol. 30, 657–661 (2012).

    Article  PubMed  Google Scholar 

  49. Bergholdt, R., Taxvig, C., Eising, S., Nerup, J. & Pociot, F. CBLB variants in type 1 diabetes and their genetic interaction with CTLA4. J. Leukoc. Biol. 77, 579–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kosoy, R., Yokoi, N., Seino, S. & Concannon, P. Polymorphic variation in the CBLB gene in human type 1 diabetes. Genes Immun. 5, 232–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Nakao, R. et al. Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol. Cell. Biol. 29, 4798–4811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bechara, C. & Sagan, S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 587, 1693–1702 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Boxio, R., Bossenmeyer-Pourié, C., Steinckwich, N., Dournon, C. & Nüsse, O. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol. 75, 604–611 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Bourgeois, C., Majer, O., Frohner, I. & Kuchler, K. In vitro systems for studying the interaction of fungal pathogens with primary cells from the mammalian innate immune system. Methods Mol. Biol. 470, 125–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Wirnsberger, G. et al. Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nat. Genet. 46, 1028–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dorfer, V. et al. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 13, 3679–3684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taus, T. et al. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10, 5354–5362 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Penninger laboratory for helpful discussions and technical support. We thank all members of the IMP-IMBA Biooptics service facility, especially G. Schmauss and T. Lendl, for assistance in cell sorting and image quantification. We also thank A. Piszczek and M. Zeba from the Vienna Biocenter Core Facilities (VBCF) for excellent histopathology services, and K. Mechtler, R. Imre, and M. Madalinski from the Protein Biochemistry facility for providing excellent mass spectrometry and peptide synthesis services. This work was supported by a consolidator ERC grant (F.I.), the EC FP7 project 'FUNGITECT' (K.K.), the FWF project P-25333 (K.K.), a Marie-Curie 'Innovative Training Networks' ImResFun grant (contract MC-ITN-606786; K.K.), an Advanced ERC grant (J.M.P.), an 'Era of Hope/Innovator Award' (J.M.P.), a Helmsley foundation VEO–IBD network grant (J.M.P.), and the Austrian Academy of Sciences (J.M.P.).

Author information

Authors and Affiliations

Authors

Contributions

G.W., F.Z., K.K., and J.M.P. designed experiments; F.Z., I.K., and R.A.W. performed western blotting and immunoprecipitation experiments; R.A.W. performed immunohistochemistry; F.Z. performed Candida spp. and L. monocytogenes systemic infections, ELISAs, and ROS, caspase-8, and C. albicans killing assays; F.Z. and G.W. performed C. albicans skin infection experiments; G.W. and F.Z. performed qPCR; G.W. and L.T. performed flow cytometry; G.W. designed the TKB binding Antennapedia–SYK fusion peptide; T.A. and F.I. performed and analyzed in vitro ubiquitination assays; A.K. performed histopathologic analyses; W.Y.L. provided CblbC373A/C373A mice; G.B. and F.F. provided recombinant CBLB29–483 and Cys373Ala CBLB29–483; J.M.P. and K.K. supervised the study; and G.W. and J.M.P. coordinated the study and wrote the manuscript.

Corresponding authors

Correspondence to Karl Kuchler or Josef M Penninger.

Ethics declarations

Competing interests

J.M.P., G.W., F.Z., and K.K. are inventors on a patent application describing the use of a TKB binding peptide as a therapeutic for the modulation of CBLB-regulated immune responses.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirnsberger, G., Zwolanek, F., Asaoka, T. et al. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med 22, 915–923 (2016). https://doi.org/10.1038/nm.4134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing