Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars

Abstract

Lakes existed on Mars later than 3.6 billion years ago, according to sedimentary evidence for deltaic deposition. The observed fluviolacustrine deposits suggest that individual lake-forming climates persisted for at least several thousand years (assuming dilute flow). But the lake watersheds’ little-weathered soils indicate a largely dry climate history, with intermittent runoff events. Here we show that these observational constraints, although inconsistent with many previously proposed triggers for lake-forming climates, are consistent with a methane burst scenario. In this scenario, chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize methane clathrate. Using numerical simulations, we find that outgassed methane can build up to atmospheric levels sufficient for lake-forming climates, if methane clathrate initially occupies more than 4% of the total volume in which it is thermodynamically stable. Such occupancy fractions are consistent with methane production by water–rock reactions due to hydrothermal circulation on early Mars. We further estimate that photochemical destruction of atmospheric methane curtails the duration of individual lake-forming climates to less than a million years, consistent with observations. We conclude that methane bursts represent a potential pathway for intermittent excursions to a warm, wet climate state on early Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geologic constraints on the duration and shutdown time of lake-forming climates.
Figure 2: Range of obliquity trajectories possible for Mars, and their probable climate effects.
Figure 3: Triggering of a CH4-enabled lake-forming climate on Mars.

Similar content being viewed by others

References

  1. Irwin, R. P., Lewis, K. W., Howard, A. D. & Grant, J. A. Paleohydrology of Eberswalde crater, Mars. Geomorphology 240, 83–101 (2015).

    Article  Google Scholar 

  2. Palucis, M. C. et al. Sequence and relative timing of large lakes in Gale crater (Mars) after the formation of Mount Sharp. J. Geophys. Res. 121, 472–496 (2016).

    Article  Google Scholar 

  3. Williams, R. M. E. & Weitz, C. M. Reconstructing the aqueous history within the southwestern Melas basin, Mars: clues from stratigraphic and morphometric analyses of fans. Icarus 242, 19–37 (2014).

    Article  Google Scholar 

  4. Milliken, R. E. & Bish, D. L. Sources and sinks of clay minerals on Mars. Philos. Mag. 90, 2293–2308 (2010).

    Article  Google Scholar 

  5. Mischna, M. A., Baker, V., Milliken, R., Richardson, M. & Lee, C. Effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate. J. Geophys. Res. 118, 560–576 (2013).

    Article  Google Scholar 

  6. Olsen, A. A. & Rimstidt, J. D. Using a mineral lifetime diagram to evaluate the persistence of olivine on Mars. Am. Mineral. 92, 598–602 (2007).

    Article  Google Scholar 

  7. Stopar, J. D., Taylor, G. J., Hamilton, V. E. & Browning, L. Kinetic model of olivine dissolution and extent of aqueous alteration on Mars. Geochim. et Cosmochim. Acta 70, 6136–6152 (2006).

    Article  Google Scholar 

  8. Halevy, I. & Head, J. W. III Episodic warming of early Mars by punctuated volcanism. Nat. Geosci. 7, 865–868 (2014).

    Article  Google Scholar 

  9. Kerber, L., Forget, F. & Wordsworth, R. Sulfur in the early Martian atmosphere revisited: experiments with a 3-D global climate model. Icarus 261, 133–148 (2015).

    Article  Google Scholar 

  10. Toon, O. B., Segura, T. & Zahnle, K. The formation of Martian river valleys by impacts. Annu. Rev. Earth Planet. Sci. 38, 303–322 (2010).

    Article  Google Scholar 

  11. Batalha, N., Domagal-Goldman, S. D., Ramirez, R. & Kasting, J. F. Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model. Icarus 258, 337–349 (2015).

    Article  Google Scholar 

  12. Chassefière, E., Lasue, J., Langlais, B. & Quesnel, Y. Early Mars serpentinization derived CH4 reservoirs and H2 induced warming. Meteorit. Planet. Sci. 51, 2234–2245 (2016).

    Article  Google Scholar 

  13. Batalha, N., Kopparapu, R. K., Haqq-Misra, J. & Kasting, J. F. Climate cycling on early Mars caused by the carbonate-silicate cycle. Earth Planet. Sci. Lett. 455, 7–13 (2016).

    Article  Google Scholar 

  14. Edwards, C. S. & Ehlmann, B.L. Carbon sequestration on Mars. Geology 43, 863–866 (2015).

    Article  Google Scholar 

  15. Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Ann. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    Article  Google Scholar 

  16. Urata, R. A. & Toon, O. B. Simulations of the Martian hydrologic cycle with a general circulation model: implications for the ancient Martian climate. Icarus 226, 229–250 (2013).

    Article  Google Scholar 

  17. Prieto-Ballesteros, O. et al. Interglacial clathrate destabilization on Mars: possible contributing source of its atmospheric methane. Geology 34, 149–152 (2006).

    Article  Google Scholar 

  18. Sloan, E. D. & Koh, C. A. Clathrate Hydrates of Natural Gases 3rd edn (CRC, 2008).

    Google Scholar 

  19. Lyons, J. R., Manning, C. & Nimmo, F. Formation of methane on Mars by fluid–rock interaction in the crust. Geophys. Res. Lett. 32, L13201 (2005).

    Article  Google Scholar 

  20. Root, M. J. & Elwood Madden, M. E. Potential effects of obliquity change on gas hydrate stability zones on Mars. Icarus 218, 534–544 (2012).

    Article  Google Scholar 

  21. Kite, E. S. et al. Stratigraphy of Aeolis Dorsa, Mars: stratigraphic context of the great river deposits. Icarus 253, 223–242 (2015).

    Article  Google Scholar 

  22. Wordsworth, R. et al. Transient reducing greenhouse warming on early Mars. Geophys. Res. Lett. 44, 665–671 (2017).

    Article  Google Scholar 

  23. Nair, H., Summers, M. E., Miller, C. E. & Yung, Y. L. Isotopic fractionation of methane in the Martian atmosphere. Icarus 175, 32–35 (2005).

    Article  Google Scholar 

  24. Kadish, S. J., Head, J. W. & Barlow, N. G. Pedestal crater heights on Mars: a proxy for the thicknesses of past, ice-rich, Amazonian deposits. Icarus 210, 92–101 (2010).

    Article  Google Scholar 

  25. Krasnopolsky, V. A., Maillard, J. P. & Owen, T. C. Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537–547 (2004).

    Article  Google Scholar 

  26. Claire, M. W. et al. The evolution of solar flux from 0.1 nm to 160 μm. Astrophys. J. 757, 95 (2012).

    Article  Google Scholar 

  27. Kite, E. S., Williams, J.-P., Lucas, A. & Aharonson, O. Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat. Geosci. 7, 335–339 (2014).

    Article  Google Scholar 

  28. Bristow, T. F. et al. Low Hesperian PCO2 constrained from in situ mineralogical analysis at Gale crater, Mars. Proc. Natl Acad. Sci. USA 114, 2166–2170 (2017).

    Article  Google Scholar 

  29. Doran, P. T. et al. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000. J. Geophys. Res. 107, ACL 13-1–ACL 13-12 (2002).

    Article  Google Scholar 

  30. Le Deit, L. et al. Sequence of infilling events in Gale crater, Mars: results from morphology, stratigraphy, and mineralogy. J. Geophys. Res. 118, 2439–2473 (2013).

    Article  Google Scholar 

  31. Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).

    Article  Google Scholar 

  32. Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

    Article  Google Scholar 

  33. Byrne, B. & Goldblatt, C. Radiative forcings for 28 potential Archean greenhouse gases. Clim. Past 10, 1779–1801 (2014).

    Article  Google Scholar 

  34. Goldblatt, C. & Zahnle, K. J. Clouds and the Faint Young Sun Paradox. Clim. Past 7, 203–220 (2011).

    Article  Google Scholar 

  35. Michalski, J. R., Noe Dobrea, E. Z., Niles, P. B. & Cuadros, J. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nat. Commun. 8, 15978 (2017).

    Article  Google Scholar 

  36. Rodriguez, J. & Alexis, P. et al. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Nat. Sci. Rep. 6, 25106 (2016).

    Article  Google Scholar 

  37. Baker, V. R., Strom, R. G., Gulick, V. C., Kargel, J. S. & Komatsu, G. Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352, 589–594 (1991).

    Article  Google Scholar 

  38. Irwin, R., Howard, A., Craddock, R. & Moore, J. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, E12S15 (2005).

    Article  Google Scholar 

  39. Wordsworth, R., Kerber, L., Pierrehumbert, R., Forget, F. & Head, J. W. Comparison of warm and wet and cold and icy scenarios for early Mars in a 3-D climate model. J. Geophys. Res. 120, 1201–1219 (2015).

    Article  Google Scholar 

  40. Kite, E. S., Sneed, J., Mayer, D. P. & Wilson, S. A. Persistent or repeated surface habitability on Mars during the late Hesperian - Amazonian. Geophys. Res. Lett. 44, 3991–3999 (2017).

    Article  Google Scholar 

  41. Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010).

    Article  Google Scholar 

  42. Parmentier, E. M. & Zuber, M. T. Early evolution of Mars with mantle compositional stratification or hydrothermal crustal cooling. J. Geophys. Res. 112, E02007 (2007).

    Article  Google Scholar 

  43. Sun, V. Z. & Milliken, R. E. Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. J. Geophys. Res. 120, 2293–2332 (2015).

    Article  Google Scholar 

  44. Saper, L. & Mustard, J. F. Extensive linear ridge networks in Nili Fossae and Nilosyrtis, Mars: implications for fluid flow in the ancient crust. Geophys. Res. Lett. 40, 245–249 (2013).

    Article  Google Scholar 

  45. Chassefière, E. & Leblanc, F. Methane release and the carbon cycle on Mars. Planet. Space Sci. 59, 207–217 (2011).

    Article  Google Scholar 

  46. Webster, C. R. et al. Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015).

    Article  Google Scholar 

  47. Vandaele, A. C. et al. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet. Space Sci. 119, 233–249 (2015).

    Article  Google Scholar 

  48. Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000).

    Article  Google Scholar 

  49. Fairén, A. G., Davila, A. F., Gago-Duport, L., Amils, R. & McKay, C. P. Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009).

    Article  Google Scholar 

  50. Kite, E. S., Halevy, I., Kahre, M. A., Wolff, M. J. & Manga, M. Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale crater mound. Icarus 223, 181–210 (2013).

    Article  Google Scholar 

  51. Fassett, C. I. & Head, J. W. The timing of Martian valley network activity: constraints from buffered crater counting. Icarus 195, 61–89 (2008).

    Article  Google Scholar 

  52. Grant, J. A. & Wilson, S. A. Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011).

    Article  Google Scholar 

  53. Grant, J. A., Wilson, S. A., Mangold, N., Calef, F. & Grotzinger, J. P. The timing of alluvial activity in Gale crater, Mars. Geophys. Res. Lett. 41, 1142–1149 (2014).

    Article  Google Scholar 

  54. Mangold, N., Quantin, C., Ansan, V., Delacourt, C. & Allemand, P. Evidence for precipitation on Mars from dendritic valleys in the valles Marineris area. Science 305, 78–81 (2004).

    Article  Google Scholar 

  55. Mangold, N., Adeli, S., Conway, S., Ansan, V. & Langlais, B. A chronology of early Mars climatic evolution from impact crater degradation. J. Geophys. Res. 117, E04003 (2012).

    Article  Google Scholar 

  56. Howard, A. D. & Moore, J. M. Late Hesperian to early Amazonian midlatitude Martian valleys: evidence from Newton and Gorgonum basins. J. Geophys. Res. 116, E05003 (2011).

    Google Scholar 

  57. Warner, N., Gupta, S., Kim, J.-R., Lin, S.-Y. & Muller, J.-P. Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars. Geology 38, 71–74 (2010).

    Article  Google Scholar 

  58. Wilson, S. A., Howard, A. D., Moore, J. M. & Grant, J. A. A cold-wet mid-latitude environment on Mars during the Hesperian–Amazonian transition: evidence from northern Arabia valleys and paleolakes. J. Geophys. Res. 121, 1667–1694 (2016).

    Article  Google Scholar 

  59. Werner, S. C. & Tanaka, K. L. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 215, 603–607 (2011).

    Article  Google Scholar 

  60. Robbins, S. J. New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403, 188–198 (2014).

    Article  Google Scholar 

  61. Goudge, T. A., Fassett, C. I., Head, J. W., Mustard, J. F. & Aureli, K. L. Insights into surface runoff on early Mars from paleolake basin morphology and stratigraphy. Geology 44, 419–422 (2016).

    Article  Google Scholar 

  62. Grant, J. A. & Wilson, S. A. A possible synoptic source of water for alluvial fan formation in southern Margaritifer Terra, Mars. Planet. Space Sci. 72, 44–52 (2012).

    Article  Google Scholar 

  63. Adeli, S. et al. Amazonian-aged fluvial system and associated ice-related features in Terra Cimmeria, Mars. Icarus 277, 286–299 (2016).

    Article  Google Scholar 

  64. Lamb, M. P., Dietrich, W. E., Aciego, S. M., DePaolo, D. J. & Manga, M. Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars. Science 320, 1067–1070 (2008).

    Article  Google Scholar 

  65. Hauber, E. et al. Asynchronous formation of Hesperian and Amazonian-aged deltas on Mars and implications for climate. J. Geophys. Res. 118, 1529–1544 (2013).

    Article  Google Scholar 

  66. Kite, E. S., Michaels, T. I., Rafkin, S., Manga, M. & Dietrich, W. E. Localized precipitation and runoff on Mars. J. Geophys. Res. 116, E07002 (2011).

    Google Scholar 

  67. Williams, R. M. E. & Malin, M. C. Sub-kilometer fans in Mojave crater, Mars. Icarus 198, 365–383 (2008).

    Article  Google Scholar 

  68. Williams, R. M. E. et al. Evidence for episodic alluvial fan formation in far western Terra Tyrrhena, Mars. Icarus 211, 222–237 (2011).

    Article  Google Scholar 

  69. Syvitski, J. P. M., Peckham, S. D., Hilberman, R. & Mulder, T. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sediment. Geol. 162, 5–24 (2003).

    Article  Google Scholar 

  70. Morgan, A. M. et al. Sedimentology and climatic environment of alluvial fans in the Martian Saheki crater and comparison with terrestrial fans in the Atacama Desert. Icarus 229, 131–156 (2014).

    Article  Google Scholar 

  71. Dietrich, W. E. et al. in Gravel-Bed Rivers: Processes and Disasters (eds Tsutsumi, D. & Laronne, J. B.) 755–784 (Wiley-Blackwell, 2017).

    Book  Google Scholar 

  72. Ody, A. et al. Global investigation of olivine on Mars. J. Geophys. Res. 118, 234–262 (2013).

    Article  Google Scholar 

  73. Koeppen, W. C. & Hamilton, V. E. Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J. Geophys. Res. 113, E05001 (2008).

    Article  Google Scholar 

  74. Hamilton, V. E. & Christensen, P. R. Evidence for extensive, olivine-rich bedrock on Mars. Geology 33, 433–436 (2005).

    Article  Google Scholar 

  75. Viviano-Beck, C. E. et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res. 119, 1403–1431 (2014).

    Article  Google Scholar 

  76. Ehlmann, B. L. & Buz, J. Mineralogy and fluvial history of the watersheds of Gale, Knobel, and Sharp craters. Geophys. Res. Lett. 42, 264–273 (2015).

    Article  Google Scholar 

  77. Bullock, M. A. & Moore, J. M. Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007).

    Article  Google Scholar 

  78. Hurowitz Joel, A. & McLennan Scott, M. A 3.5 Ga record of water-limited, acidic weathering conditions on Mars. Earth Planet. Sci. Lett. 260, 432–443 (2007).

    Article  Google Scholar 

  79. Tosca, N. J. & Knoll, A. H. Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 286, 379–386 (2009).

    Article  Google Scholar 

  80. Squyres, S. W. et al. Rocks of the Columbia Hills. J. Geophys. Res. 111, E02S11 (2006).

    Google Scholar 

  81. Elwood Madden, M. E., Madden, A. S. & Rimstidt, J. D. How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology 37, 635–638 (2009).

    Article  Google Scholar 

  82. Siebach, K. L. et al. Sorting out compositional trends in sedimentary rocks of the Bradbury group (Aeolis Palus), Gale crater, Mars. J. Geophys. Res. 122, 295–328 (2017).

    Article  Google Scholar 

  83. Woo, M.-K. Permafrost Hydrology (Springer, 2012).

    Book  Google Scholar 

  84. Barnhart, C. J., Howard, A. D. & Moore, J. M. Long-term precipitation and late-stage valley network formation: landform simulations of Parana basin, Mars. J. Geophys. Res. 114, E01003 (2009).

    Google Scholar 

  85. Matsubara, Y., Howard, A. D. & Gochenour, J. P. Hydrology of early Mars: valley network incision. J. Geophys. Res. 118, 1365–1387.

  86. Hoke, M. R. T. & Hynek, B. M. Roaming zones of precipitation on ancient Mars as recorded in valley networks. J. Geophys. Res. 114, E08002 (2009).

    Article  Google Scholar 

  87. Forget, F., Haberle, R. M., Montmessin, F., Levrard, B. & Head, J. W. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006).

    Article  Google Scholar 

  88. Skinner, J. A., Tanaka, K. L. & Platz, T. Widespread loess-like deposit in the Martian northern lowlands identifies Middle Amazonian climate change. Geology 40, 1127–1130 (2012).

    Article  Google Scholar 

  89. Irwin, R. P. III Testing Links Between Impacts and Fluvial Erosion on Post-Noachian Mars, Lunar and Planetary Science Conference LPI Contribution No. 1719, 2958 (2013).

  90. Ramirez, R. M. & Kasting, J. F. Could cirrus clouds have warmed early Mars? Icarus 281, 248–261 (2017).

    Article  Google Scholar 

  91. Segura, T. L., Zahnle, K., Toon, O. B. & McKay, C. P. Comparative Climatology of Terrestrial Planets (eds Mackwell, S. et al.) 417–437 (Univ. Arizona Press, 2013).

    Google Scholar 

  92. Mumma, M. J. & Charnley, S.B. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).

    Article  Google Scholar 

  93. Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

    Article  Google Scholar 

  94. Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Month. Not. R. Astron. Soc. 304, 793–799 (1999).

    Article  Google Scholar 

  95. Armstrong, J. C., Leovy, C. B. & Quinn, T. A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes. Icarus 171, 255–271 (2004).

    Article  Google Scholar 

  96. Li, G. & Batygin, K. On the spin-axis dynamics of a moonless Earth. Astrophys. J. 790, 69 (2014).

    Article  Google Scholar 

  97. Lissauer, J. J., Barnes, J. W. & Chambers, J. E. Obliquity variations of a moonless Earth. Icarus 217, 77–87 (2012).

    Article  Google Scholar 

  98. Fastook, J. L. & Head, J. W. Glaciation in the late Noachian icy highlands: ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015).

    Article  Google Scholar 

  99. Mahaffy, P. R. et al. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2015).

    Article  Google Scholar 

  100. Mousis, O. et al. Volatile trapping in Martian clathrates. Space Sci. Rev. 174, 213–250 (2013).

    Article  Google Scholar 

  101. Mousis, O. et al. Methane clathrates in the Solar System. Astrobiology 15, 308–326 (2015).

    Article  Google Scholar 

  102. McCollom, T. M. Formation of meteorite hydrocarbons from thermal decomposition of siderite. Geochim. Cosmochim. Acta 67, 311–317 (2003).

    Article  Google Scholar 

  103. Tréhu, A. M. et al. Feeding methane vents and gas hydrate deposits at south Hydrate Ridge. Geophys. Res. Lett. 31, L23310 (2014).

    Google Scholar 

  104. Besserer, J. F. et al. GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys. Res. Lett. 41, 5771–5777 (2014).

    Article  Google Scholar 

  105. Onstott, T. C. et al. Martian CH4: sources, flux, and detection. Astrobiology 6, 377–395 (2006).

    Article  Google Scholar 

  106. Klauda, J. B. & Sandler, S. I. Global distribution of methane hydrate in ocean sediment. Energy Fuels 19, 459–470 (2005).

    Article  Google Scholar 

  107. Levi, A., Sasselov, D. & Podolak, M. Structure and dynamics of cold water super-earths: the case of occluded CH4 and its outgassing. Astrophys. J. 792, 125 (2014).

    Article  Google Scholar 

  108. Peters, B., Zimmermann, N. E. R., Beckham, G. T., Tester, J. W. & Trout, B. L. Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. J. Am. Chem. Soc. 130, 17342–17350 (2008).

    Article  Google Scholar 

  109. Stern, L. A., Circone, S., Kirby, S. H. & Durham, W. B. Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Can. J. Phys. 81, 271–283 (2003).

    Article  Google Scholar 

  110. Gainey, S. R. & Elwood Madden, M. E. Kinetics of methane clathrate formation and dissociation under Mars relevant conditions. Icarus 218, 513–524 (2012).

    Article  Google Scholar 

  111. Madeleine, J.-B. et al. Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203, 390–405 (2009).

    Article  Google Scholar 

  112. Carr, M. H. & Head, J. W. Oceans on Mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 5042–1 (2003).

    Article  Google Scholar 

  113. Summers, M. E., Lieb, B. J., Chapman, E. & Yung, Y. L. Atmospheric biomarkers of subsurface life on Mars. Geophys. Res. Lett. 29, 2171 (2002).

    Google Scholar 

  114. Nair, H., Allen, M., Anbar, A. D., Yung, Y. L. & Clancy, R. T. A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994).

    Article  Google Scholar 

  115. Wong, A.-S., Atreya, S. K. & Encrenaz, T. Chemical markers of possible hot spots on Mars. J. Geophys. Res. 108, 5026 (2003).

    Article  Google Scholar 

  116. McKay, C. P., Pollack, J. B. & Courtin, R. The greenhouse and antigreenhouse effects on Titan. Science 253, 1118–1121 (1991).

    Article  Google Scholar 

  117. Allen, M., Yung, Y. L. & Pinto, J. P. Titan—aerosol photochemistry and variations related to the sunspot cycle. Astrophys. J. 242, L125–L128 (1980).

    Article  Google Scholar 

  118. Yung, Y. L., Allen, M. & Pinto, J. P. Photochemistry of the atmosphere of Titan - Comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984).

    Article  Google Scholar 

  119. Ribas, I., Guinan, E. F., Güdel, M. & Audard, M. Evolution of the solar activity over time and effects on planetary atmospheres. I. high-energy irradiances. Astrophys. J. 622, 680–694 (2005).

    Article  Google Scholar 

  120. Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for input from D. E. Archer, J. C. Armstrong, B. L. Ehlmann, V. E. Hamilton, A. D. Howard, R. P. III Irwin, M. C. Palucis, D. Stolper, R. M. E. Williams and R. Wordsworth. We thank J. F. Kasting and A. G. Fairén for useful reviews. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We acknowledge the University of Chicago’s Research Computing Center and financial support from NASA (NNX16AG55G, NNX15AM49G).

Author information

Authors and Affiliations

Authors

Contributions

E.S.K. designed research; M.A.M., Y.L.Y. and D.P.M. contributed new models, model output, and analyses; E.S.K., C.G. and P.G. carried out research; and E.S.K. wrote the paper.

Corresponding author

Correspondence to Edwin S. Kite.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kite, E., Gao, P., Goldblatt, C. et al. Methane bursts as a trigger for intermittent lake-forming climates on post-Noachian Mars. Nature Geosci 10, 737–740 (2017). https://doi.org/10.1038/ngeo3033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing