Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact-driven subduction on the Hadean Earth

Abstract

Impact cratering was a dominant geologic process in the early Solar System that probably played an active role in the crustal evolution of the young terrestrial planets. The Earth’s interior during the Hadean, 4.56 to 4 billion years ago, may have been too hot to sustain plate tectonics. However, whether large impacts could have triggered tectonism on the early Earth remains unclear. Here we conduct global-scale tectonic simulations of the evolution of the Earth through the Hadean eon under variable impact fluxes. Our simulations show that the thermal anomalies produced by large impacts induce mantle upwellings that are capable of driving transient subduction events. Furthermore, we find that moderate-sized impacts can act as subduction triggers by causing localized lithospheric thinning and mantle upwelling, and modulate tectonic activity. In contrast to contemporary subduction, the simulated localized subduction events are relatively short-lived (less than 10 Myr) with relatively thin, weak plates. We suggest that resurgence in subduction activity induced by an increased impact flux between 4.1 and 4.0 billion years ago may explain the coincident increase in palaeointensity of the magnetic field. We further suggest that transient impact-driven subduction reconciles evidence from Hadean zircons for tectonic activity with other lines of evidence consistent with an Earth that was largely tectonically stagnant from the Hadean into the Archaean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of impacts on mantle dynamics.
Figure 2: Time evolution of global-scale Hadean convection simulation.
Figure 3: Evolution of Hadean heat flux and magnetic field.
Figure 4: Hadean Earth melt production and mobility.

Similar content being viewed by others

References

  1. O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).

    Article  Google Scholar 

  2. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  Google Scholar 

  3. Valley, J. W., Peck, W. H., King, E. M. & Wilde, S. A. A cool early Earth. Geology 30, 351–354 (2002).

    Article  Google Scholar 

  4. Hopkins, M., Harrison, T. M. & Manning, C. E. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008).

    Article  Google Scholar 

  5. Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F. & Bono, R. K. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349, 521–524 (2015).

    Article  Google Scholar 

  6. Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).

    Article  Google Scholar 

  7. Debaille, V. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).

    Article  Google Scholar 

  8. Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).

    Article  Google Scholar 

  9. O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).

    Article  Google Scholar 

  10. Moore, W. B. & Webb, A. A. G. Heat-pipe Earth. Nature 501, 501–505 (2013).

    Article  Google Scholar 

  11. Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J. & Gerya, T. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

    Article  Google Scholar 

  12. O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H. & Lee, C. T. Episodic Precambrian subduction. Earth Planet. Sci. Lett. 262, 552–562 (2007).

    Article  Google Scholar 

  13. Moyen, J. F. & Van Hunen, J. Short-term episodicity of Archaean plate tectonics. Geology 40, 451–454 (2012).

    Article  Google Scholar 

  14. Davies, G. F. Conjectures on the thermal and tectonic evolution of the Earth. Lithos 30, 281–289 (1993).

    Article  Google Scholar 

  15. Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V. & Whattam, S. A. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015).

    Article  Google Scholar 

  16. Roberts, J. H., Lillis, R. J. & Manga, M. Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. 114, E04009 (2009).

    Google Scholar 

  17. Marinova, M. M., Aharonson, O. & Asphaug, E. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008).

    Article  Google Scholar 

  18. Watters, W. A., Zuber, M. T. & Hager, B. H. Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophy. Res. 114, E02001 (2009).

    Article  Google Scholar 

  19. Roberts, J. H. & Barnouin, O. S. The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res. 117, E02007 (2012).

    Google Scholar 

  20. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  Google Scholar 

  21. Marchi, S. et al. Global resurfacing of Mercury 4.0-4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

    Article  Google Scholar 

  22. Marchi, S. et al. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6, 303–307 (2013).

    Article  Google Scholar 

  23. Hansen, V. L. Subduction origin on early Earth: a hypothesis. Geology 35, 1059–1062 (2007).

    Article  Google Scholar 

  24. Zhang, S. & O’Neill, C. The early geodynamic evolution of Mars-type planets. Icarus 265, 187–208 (2016).

    Article  Google Scholar 

  25. Elbeshausen, D. & Wünnemann, K. iSALE-3D: a three-dimensional, multi-material, multi-rheology hydrocode and its applications to large-scale geodynamic processes. In Proc. 11th Hypervelocity Impact Symp. (HVIS) (Fraunhofer, 2011).

    Google Scholar 

  26. Bottke, W. F., Walker, R. J., Day, J. M., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  Google Scholar 

  27. Norman, M. & Bottke, W. F. Late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).

    Article  Google Scholar 

  28. Maier, W. D. et al. Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460, 620–623 (2009).

    Article  Google Scholar 

  29. Weller, M. B., Lenardic, A. & O’Neill, C. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets. Earth Planet. Sci. Lett. 420, 85–94 (2015).

    Article  Google Scholar 

  30. O’Neill, C., Lenardic, A., Weller, M., Moresi, L. & Quenette, S. A window for plate tectonics in terrestrial planet evolution? Phys. Earth Planet. Inter. 255, 80–92 (2016).

    Article  Google Scholar 

  31. Kronbichler, M., Heister, T. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191, 12–29 (2012).

    Article  Google Scholar 

  32. Turcotte, D. & Schubert, G. Geodynamics 465 (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  33. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals - II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article  Google Scholar 

  34. Ringwood, A. E. & Irifune, T. Nature of the 650-Km seismic discontinuity - implications for mantle dynamics and differentiation. Nature 331, 131–136 (1988).

    Article  Google Scholar 

  35. Garel, F. et al. Interaction of subducted slabs with the mantle transition-zone: a regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochem. Geophys. Geosyst. 15, 1739–1765 (2014).

    Article  Google Scholar 

  36. Moore, D. E. & Rymer, M. J. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448, 795–797 (2007).

    Article  Google Scholar 

  37. van der Pluijm, B. Structural geology: natural fault lubricants. Nat. Geosci. 4, 217–218 (2011).

    Article  Google Scholar 

  38. Remitti, F., Smith, S. A. F., Mittempergher, S., Gualtieri, A. F. & Di Toro, G. Frictional properties of fault zone gouges from the J-FAST drilling project (M w 9.0 2011 Tohoku-Oki earthquake). Geophys. Res. Lett. 42, 2691–2699 (2015).

    Article  Google Scholar 

  39. Escartin, J., Hirth, G. & Evans, B. Strength of slightly serpentinized peridotites: implications for the tectonics of oceanic lithosphere. Geology 29, 1023–1026 (2001).

    Article  Google Scholar 

  40. Gubbins, D., Alfe, D., Masters, G., Price, G. D. & Gillan, M. Gross thermodynamics of two-component core convection. Geophys. J. Int. 157, 1407–1414 (2004).

    Article  Google Scholar 

  41. Nimmo, F., Price, G. D., Brodholt, J. & Gubbins, D. The influence of potassium on core and geodynamo evolution. Geophy. J. Int. 156, 363–376 (2004).

    Article  Google Scholar 

  42. Watters, W. A., Zuber, M. T. & Hager, B. H. Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophys. Res. 114, E02001 (2009).

    Article  Google Scholar 

  43. Melosh, H. J. Impact Cratering: A Geologic Process 253 (Oxford Monographs on Geology and Geophysics, No. 11, Oxford Univ. Press, 1989).

    Google Scholar 

  44. Pierazzo, E., Vickery, A. M. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997).

    Article  Google Scholar 

  45. Roberts, J. H. & Arkani-Hamed, J. Impact heating and coupled core cooling and mantle dynamics on Mars. J. Geophys. Res. 119, 729–744 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

C.O’N. and S.Z. acknowledge support from the CCFS ARC Centre of Excellence (Pub. no. 1003/1175). S.M. and W.B. acknowledge support from NASA Exobiology program and NASA SSERVI.

Author information

Authors and Affiliations

Authors

Contributions

C.O’N. wrote the majority of the paper, and performed the simulations. S.M. co-wrote portions of the paper, contributed to experimental design, and derived impact fluxes for computations. S.Z. aided in code development and performed some simulations. W.B. co-wrote portions of the paper.

Corresponding author

Correspondence to C. O’Neill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4007 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neill, C., Marchi, S., Zhang, S. et al. Impact-driven subduction on the Hadean Earth. Nature Geosci 10, 793–797 (2017). https://doi.org/10.1038/ngeo3029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing