Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse

Abstract

Ongoing and future space missions aim to identify potentially habitable planets in our Solar System and beyond. Planetary habitability is determined not only by a planet’s current stellar insolation and atmospheric properties, but also by the evolutionary history of its climate. It has been suggested that icy planets and moons become habitable after their initial ice shield melts as their host stars brighten. Here we show from global climate model simulations that a habitable state is not achieved in the climatic evolution of those icy planets and moons that possess an inactive carbonate–silicate cycle and low concentrations of greenhouse gases. Examples for such planetary bodies are the icy moons Europa and Enceladus, and certain icy exoplanets orbiting G and F stars. We find that the stellar fluxes that are required to overcome a planet’s initial snowball state are so large that they lead to significant water loss and preclude a habitable planet. Specifically, they exceed the moist greenhouse limit, at which water vapour accumulates at high altitudes where it can readily escape, or the runaway greenhouse limit, at which the strength of the greenhouse increases until the oceans boil away. We suggest that some icy planetary bodies may transition directly to a moist or runaway greenhouse without passing through a habitable Earth-like state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Climates of a snowball planet around a G star.
Figure 2: Comparison between snowball melting threshold and moist or runaway greenhouse limit.
Figure 3: Climate evolution of snowball planets.
Figure 4: Schematic illustration of the climate transition under stellar brightening and the underlying physical mechanisms.

Similar content being viewed by others

References

  1. Buratti, B. & Veverka, J. Voyager photometry of Europa. Icarus 55, 93–110 (1983).

    Article  Google Scholar 

  2. Howett, C. J. A., Spencer, J. R., Pearl, J. & Segura, M. Thermal inertia and bolometric bond albedo values for Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements. Icarus 206, 573–593 (2010).

    Article  Google Scholar 

  3. Showman, A. P. & Malhotra, R. The Galilean satellites. Science 286, 77–84 (1999).

    Article  Google Scholar 

  4. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    Article  Google Scholar 

  5. Tajika, E. Snowball planets as a possible type of water-rich terrestrial planets in the extrasolar planetary system. Astrophys. J. Lett. 680, L53 (2008).

    Article  Google Scholar 

  6. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  7. Menou, K. Climate stability of habitable Earth-like planets. Earth Planet Sci. Lett. 429, 20–24 (2015).

    Article  Google Scholar 

  8. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108–128 (1993).

    Article  Google Scholar 

  9. Shields, A. L., Bitz, C. M., Meadows, V. S., Joshi, M. M. & Robinson, T. D. Spectrum-driven planetary deglaciation due to increases in stellar luminosity. Astrophys. J. Lett. 785, L9 (2014).

    Article  Google Scholar 

  10. Ramirez, R. M. & Kaltenegger, L. Habitable zones of post-main sequence stars. Astrophys. J. 823, 1–16 (2016).

    Article  Google Scholar 

  11. Wolf, E. T., Shields, A. L., Kopparapu, R. K., Haqq-Misra, J. & Toon, O. B. Constraints on climate and habitability for earth-like exoplanets determined from a general circulation model. Astrophys. J. 837, 1–11 (2017).

    Article  Google Scholar 

  12. Pierrehumbert, R. T. Principles of Planetary Climate (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  13. North, G. R. Analytical solution to a simple climate model with diffusive heat transport. J. Atmos. Sci. 32, 1301–1307 (1975).

    Article  Google Scholar 

  14. Ishiwatari, M., Nakajima, K., Takehiro, S. & Hayashi, Y.-Y. Dependence of climate states of gray atmosphere on solar constant: from the runaway greenhouse to the snowball states. J. Geophys. Res. 112, D13120 (2007).

    Article  Google Scholar 

  15. Pierrehumbert, R. T. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429, 646–649 (2004).

    Article  Google Scholar 

  16. Pierrehumbert, R. T., Abbot, D. S., Voigt, A. & Koll, D. D. B. Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417–460 (2011).

    Article  Google Scholar 

  17. Hu, Y., Yang, J., Ding, F. & Peltier, W. R. Model dependence of the CO2 threshold for melting the hard snowball Earth. Clim. Past 7, 17–25 (2011).

    Article  Google Scholar 

  18. Abbot, D. S. et al. Clouds and snowball Earth deglaciation. Geophys. Res. Lett. 39, L20711 (2012).

    Article  Google Scholar 

  19. Abbot, D. S. Resolved snowball Earth clouds. J. Clim. 27, 4391–4402 (2014).

    Article  Google Scholar 

  20. Kasting, J. F., Chen, H. & Kopparapu, R. K. Stratospheric temperatures and water loss from moist greenhouse atmospheres of Earth-like planets. Astrophys. J. Lett. 813, L3 (2015).

    Article  Google Scholar 

  21. Ingersoll, A. P. The runaway greenhouse: a history of water on Venus. J. Atmos. Sci. 26, 1191–1198 (1969).

    Article  Google Scholar 

  22. Brandt, R. E., Warren, S. G., Worby, A. P. & Grenfell, T. C. Surface albedo of the Antarctic sea ice zone. J. Clim. 18, 3606–3622 (2005).

    Article  Google Scholar 

  23. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  Google Scholar 

  24. Warren, S. G., Brandt, R. E., Grenfell, T. C. & Mckay, C. P. Snowball Earth: ice thickness on the tropical ocean. J. Geophys. Res. 107, 31-1–31-18 (2002).

    Article  Google Scholar 

  25. Shields, A. L. et al. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets. Astrobiology 13, 715–739 (2013).

    Article  Google Scholar 

  26. Yang, J., Boue, G., Frabrycky, D. C. & Abbot, D. S. Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 787, L2 (2014).

    Article  Google Scholar 

  27. Wolf, E. T. & Toon, O. B. The evolution of habitable climates under the brightening Sun. J. Geophys. Res. 120, 5775–5794 (2015).

    Article  Google Scholar 

  28. Popp, M., Schmidt, H. & Marotzke, J. Transition to a moist greenhouse with CO2 and solar forcing. Nat. Commun. 7, 10627 (2016).

    Article  Google Scholar 

  29. Leconte, J., Forget, F., Charnay, B., Wordsworth, R. & Pottier, A. Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–271 (2013).

    Article  Google Scholar 

  30. Kopparapu, R. K. et al. Habitable zones around main sequence stars: new estimates. Astrophys. J. 787, 1–6 (2013).

    Google Scholar 

  31. Goldblatt, C., Robinson, T. D., Zahnle, K. J. & Crisp, D. Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661–667 (2013).

    Article  Google Scholar 

  32. Yang, J., Cowan, N. B. & Abbot, D. S. Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Astrophys. J. 771, L45 (2013).

    Article  Google Scholar 

  33. Abe, Y., Abe-Ouchi, A., Sleep, N. H. & Zahnle, K. J. Habitable zone limits for dry planets. Astrobiology 11, 443–460 (2011).

    Article  Google Scholar 

  34. Kasting, J. F. & Harman, C. E. Extrasolar planets: inner edge of the habitable zone. Nature 504, 221–223 (2013).

    Article  Google Scholar 

  35. Silva, L., Vladilo, G., Schulte, P. M., Murante, G. & Provenzale, A. From climate models to planetary habitability: temperature constraints for complex life. Int. J. Astrobiol. 16, 244–265 (2016).

    Article  Google Scholar 

  36. Borucki, W. J. et al. Kepler-22b: a 2.4 Earth-radius planet in the habitable zone of a Sun-like star. Astrophys. J. 745, 1–12 (2012).

    Article  Google Scholar 

  37. Kite, E., Manga, M. & Gaidos, E. Geodynamics and rate of volcanism on massive Earth-like planets. Astrophys. J. 700, 1732–1749 (2009).

    Article  Google Scholar 

  38. O’Neill, C. & Lenardic, A. Geological consequences of super-sized Earths. Geophys. Res. Lett. 34, L19204 (2007).

    Article  Google Scholar 

  39. Miyagoshi, T., Kameyama, M. & Ogawa, M. Thermal convection and the convective regime diagram in super-Earths. J. Geophys. Res. 120, 1267–1278 (2015).

    Article  Google Scholar 

  40. Wordsworth, R. & Pierrehumbert, R. T. Water loss from terrestrial planets with CO2-rich atmospheres. Astrophys. J. 778, 1–19 (2013).

    Article  Google Scholar 

  41. Collins, W. D. et al. Description of the NCAR Community Atmosphere Model (CAM 3.0) 214 (NCAR Tech. Note NCAR/TN-464 + STR, 2004); http://www.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf

  42. Boville, B. A., Rasch, P. J., Hack, J. J. & McCaa, J. R. Representation of clouds and precipitation processes in the Community Atmosphere Model version 3 (CAM3). J. Clim. 19, 2162–2183 (2006).

    Article  Google Scholar 

  43. Abbot, D. S. & Pierrehumbert, R. T. Mudball: surface dust and snowball Earth deglaciation. J. Geophys. Res. 115, D03104 (2010).

    Article  Google Scholar 

  44. Abbot, D. S., Eisenman, I. & Pierrehumbert, R. T. The importance of ice vertical resolution for Snowball climate and deglaciation. J. Clim. 23, 6100–6109 (2010).

    Article  Google Scholar 

  45. Oleson, K. W. et al. Technical Description of the Community Land Model (CLM) 174 (NCAR Tech. Note NCAR/ TN-4611STR, 2004); http://opensky.ucar.edu/islandora/object/technotes:393

  46. Briegleb, B. P. et al. Scientific Description of the Sea Ice Component in the Community Climate System Model Version Three 78 (NCAR Tech. Note NCAR/TN-463 + STR, 2004); http://opensky.ucar.edu/islandora/object/technotes:391

  47. Warren, S. G. & Brandt, R. E. Comment on “Snowball Earth: A thin-ice solution with flowing sea glaciers” by David Pollard and James F. Kasting. J. Geophys. Res. 111, C09016 (2006).

    Google Scholar 

  48. Light, B., Brandt, R. E. & Warren, S. G. Hydrohalite in cold sea ice: laboratory observations of single crystals, surface accumulations, and migration rates under a temperature gradient, with application to “Snowball Earth”. J. Geophys. Res. 114, C07018 (2009).

    Article  Google Scholar 

  49. Dadic, R. et al. Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: implications for sea glaciers on Snowball Earth. J. Geophys. Res. 118, 1658–1676 (2013).

    Article  Google Scholar 

  50. Yang, J. et al. Differences in water vapor radiative transfer among 1D models can significantly affect the inner edge of the habitable zone. Astrophys. J. 826, 222 (2016).

    Article  Google Scholar 

  51. Kasting, J. F. & Ackerman, T. P. Climatic consequences of very high CO2 levels in Earth’s early atmosphere. Science 234, 1383–1385 (1986).

    Article  Google Scholar 

  52. Williams, D. M., Kasting, J. F. & Wade, R. A. Habitable moons around extrasolar giant planets. Nature 385, 234–236 (1997).

    Article  Google Scholar 

  53. Lammer, H. et al. Origin and stability of exomoon atmospheres: implications for habitability. Orig. Life Evol. Biosph. 44, 239–260 (2014).

    Article  Google Scholar 

  54. Kipping, D. M., Bakos, G. À., Buchhave, L., Nesvorny, D. & Schmitt, A. The hunt for exomoons with Kepler (HEK). I. Description of a new observational project. Astrophys. J. 750, 1–19 (2012).

    Article  Google Scholar 

  55. Heller, R. et al. Formation, habitability, and detection of extrasolar moons. Astrobiology 14, 798–835 (2014).

    Article  Google Scholar 

  56. Kopparapu, R. K. et al. The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys. J. 819, 1–14 (2016).

    Article  Google Scholar 

  57. Haqq-Misra, J., Kopparapu, R. K., Batalha, N. E. & Kasting, J. Limit cycles can reduce the width of the habitable zone. Astrophys. J. 827, 1–10 (2016).

    Article  Google Scholar 

  58. Le Hir, G. et al. The snowball Earth aftermath: exploring the limits of continental weathering processes. Earth Planet. Sci. Lett. 277, 453–463 (2008).

    Article  Google Scholar 

  59. Yang, J., Peltier, W. R. & Hu, Y. The initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part I: the influences of solar luminosity, CO2 concentration, and the sea ice/snow albedo parameterization. J. Clim. 25, 2711–2736 (2012).

    Article  Google Scholar 

  60. Yang, J., Peltier, W. R. & Hu, Y. The initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part II: climate dynamic feedbacks. J. Clim. 25, 2737–2754 (2012).

    Article  Google Scholar 

  61. Yang, J., Peltier, W. R. & Hu, Y. The initiation of modern soft and hard Snowball Earth climates in CCSM4. Clim. Past 8, 907–918 (2012).

    Article  Google Scholar 

  62. Liu, Y., Peltier, W. R., Yang, J. & Vettorretti, G. The initiation of Neoproterozoic “snowball” climates in CCSM3: the influence of paleocontinental configuration. Clim. Past 9, 2555–2577 (2013).

    Article  Google Scholar 

  63. Liu, Y., Peltier, W. R., Yang, J., Vettoretti, G. & Wang, Y. Strong effects of tropical ice sheet coverage and thickness on the hard snowball Earth bifurcation point. Clim. Dynam. 48, 3459–3474 (2016).

    Article  Google Scholar 

  64. Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000).

    Article  Google Scholar 

  65. Peltier, W. R., Liu, Y. & Crowley, J. W. Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–818 (2007).

    Article  Google Scholar 

  66. Liu, Y. & Peltier, W. R. A coupled carbon cycle-climate model of neoproterozoic glaciation: influence of continental configuration on the formation of a “soft snowball”. J. Geophys. Res. 115, D17111 (2010).

    Article  Google Scholar 

  67. Villanueva, G. L. et al. Strong water isotopic anomalies in the Martian atmosphere: probing current and ancient reservoirs. Science 348, 218–221 (2015).

    Article  Google Scholar 

  68. Wordsworth, R. et al. Global modelling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution. Icarus 222, 1–19 (2013).

    Article  Google Scholar 

  69. Leconte, J., Wu, H., Menou, K. & Murray, N. Asynchronous rotation of Earth-mass planets in the habitable zone of lower mass stars. Science 347, 632–635 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to D. S. Abbot, D. D. B. Koll, A. P. Showman and Z. Liu for their helpful discussions, and to J. Haqq-Misra for providing the OLR fitting coefficients. We thank A. Ingersoll for helpful comments and suggestions. J.Y. is supported by the National Science Foundation of China (NSFC) grants 41675071 and 41606060, Y.H. is supported by NSFC grants 41375072 and 41530423, and W.R.P. is supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant A9627. R.M.R. acknowledges support by the Simons Foundation (SCOL 290357, Kaltenegger). The required computations were performed on the SciNet facility at the University of Toronto, which is a component of the Compute Canada HPC platform.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. led this work. J.Y., F.D. and Y.H. designed the study. J.Y. performed, analysed and interpreted the simulations. F.D., R.M.R., W.R.P., Y.H. and Y.L. assisted with the analysis and interpretation of the data. W.R.P. provided computer code necessary for the simulations. All authors discussed the results and wrote the paper.

Corresponding authors

Correspondence to Jun Yang or Yongyun Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Ding, F., Ramirez, R. et al. Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse. Nature Geosci 10, 556–560 (2017). https://doi.org/10.1038/ngeo2994

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing