Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbial substrate preference dictated by energy demand rather than supply

Abstract

Growth substrates that maximize energy yield are widely thought to be utilized preferentially by microorganisms. However, observed distributions of microorganisms and their activities often deviate from predictions based solely on thermodynamic considerations of substrate energy supply. Here we present observations of the bioenergetics and growth yields of a metabolically flexible, thermophilic strain of the archaeon Acidianus when grown autotrophically on minimal medium with hydrogen (H2) or elemental sulfur (S°) as an electron donor, and S° or ferric iron (Fe3+) as an electron acceptor. Thermodynamic calculations indicate that S°/Fe3+ and H2/Fe3+ yield three- and fourfold more energy per mole of electrons transferred, respectively, than the H2/S° couple. However, biomass yields in Acidianus cultures provided with H2/S° were eightfold greater than when provided S°/Fe3+ or H2/Fe3+, indicating that the H2/S° redox couple is preferred. Indeed, cells provided with all three growth substrates (H2, Fe3+ and S°) grew preferentially by reduction of S° with H2. We conclude that substrate preference is dictated by differences in the energy demand of electron transfer reactions in Acidianus when grown with different substrates, rather than substrate energy supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrographs of DS80 cells grown with different electron donor/acceptor pairs reveal differences in morphology.
Figure 2: Bioenergetics and biomass yields per kilojoule of energy dissipated in DS80 cultures provided with H2/S°, S°/Fe3+ or H2/Fe3+.
Figure 3: Growth and/or substrate transformation activities in biotic and abiotic experiments provided with H2/S°/Fe3+.

Similar content being viewed by others

References

  1. Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    Google Scholar 

  2. Lin, W., Wang, Y., Gorby, Y., Nealson, K. & Pan, Y. Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. Sci. Rep. 3, 1643 (2013).

    Article  Google Scholar 

  3. Atlas, R. M. & Bartha, R. Microbial Ecology: Fundamentals and Applications (Benjamin-Cummings, 1986).

    Google Scholar 

  4. Amend, J. P., Rogers, K. L., Shock, E. L., Gurrieri, S. & Inguaggiato, S. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1, 37–58 (2003).

    Article  Google Scholar 

  5. Shock, E. L. et al. Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim. Cosmochim. Acta 74, 4005–4043 (2010).

    Article  Google Scholar 

  6. Lovley, D. R. & Klug, M. J. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol. 45, 187–192 (1983).

    Google Scholar 

  7. Nealson, K. H. & Stahl, D. A. Microorganisms and biogeochemical cycles; what can we learn from layered microbial communities? Rev. Mineral. Geochem. 35, 5–34 (1997).

    Google Scholar 

  8. Spear, J. R., Walker, J. J., McCollom, T. M. & Pace, N. R. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl Acad. Sci. USA 102, 2555–2560 (2005).

    Article  Google Scholar 

  9. Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).

    Article  Google Scholar 

  10. Roden, E. E. & Wetzel, R. G. Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Microb. Ecol. 45, 252–258 (2003).

    Article  Google Scholar 

  11. Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010).

    Article  Google Scholar 

  12. Canfield, D. E. & Des Marais, D. J. Aerobic sulfate reduction in microbial mats. Science 251, 1471–1473 (1991).

    Article  Google Scholar 

  13. D’ Hondt, S. et al. Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216–2221 (2004).

    Article  Google Scholar 

  14. Hansel, C. M. et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME J. 9, 2400–2412 (2015).

    Article  Google Scholar 

  15. Marounek, M., Fliegrova, K. & Bartos, S. Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl. Environ. Microbiol. 55, 1570–1573 (1989).

    Google Scholar 

  16. Urbieta, M. S. et al. Draft genome sequence of the novel thermoacidophilic archaeon Acidianus copahuensis strain ALE1, isolated from the Copahue volcanic area in Neuquén, Argentina. Genome Announc. 2, e00259-00214 (2014).

    Article  Google Scholar 

  17. Segerer, A., Neuner, A., Kristjansson, J. K. & Stetter, K. O. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi Comb. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing Archaebacteria. Int. J. Syst. Bacteriol. 36, 559–564 (1986).

    Article  Google Scholar 

  18. Plumb, J. J., Haddad, C. M., Gibson, J. A. E. & Franzmann, P. D. Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int. J. Syst. Evol. Microbiol. 57, 1418–1423 (2007).

    Article  Google Scholar 

  19. Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).

    Google Scholar 

  20. Boyd, E. S. & Druschel, G. K. Involvement of intermediate sulfur species in biological reduction of elemental sulfur under acidic, hydrothermal conditions. Appl. Environ. Microbiol. 79, 2061–2068 (2013).

    Article  Google Scholar 

  21. Kamyshny, A. Solubility of cyclooctasulfur in pure water and sea water at different temperatures. Geochim. Cosmochim. Acta 73, 6022–6028 (2009).

    Article  Google Scholar 

  22. Xu, Y. & Schoonen, M. A. A. The stability of thiosulfate in the presence of pyrite in low-temperature aqueous solutions. Geochim. Cosmochim. Acta 59, 4605–4622 (1995).

    Article  Google Scholar 

  23. Nordstrom, D. K., Ball, J. W. & McClesky, R. B. in Ground Water to Surface Water: Chemistry of Thermal Outflows in Yellowstone National Park (eds Inskeep, W. P. & McDermott, T. R.) 143–162 (US Geological Survey, 2005).

    Google Scholar 

  24. Rickard, D. & Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007).

    Article  Google Scholar 

  25. Laska, S., Lottspeich, F. & Kletzin, A. Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology. 149, 2357–2371 (2003).

    Article  Google Scholar 

  26. Veith, A. et al. Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens. Front. Microbiol. 2, 37 (2011).

    Article  Google Scholar 

  27. Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358–11363 (2006).

    Article  Google Scholar 

  28. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

    Article  Google Scholar 

  29. Leang, C., Coppi, M. V. & Lovley, D. R. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J. Bacteriol. 185, 2096–2103 (2003).

    Article  Google Scholar 

  30. Myers, C. R. & Myers, J. M. Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol. 179, 1143–1152 (1997).

    Article  Google Scholar 

  31. Kletzin, A. et al. Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front. Microbiol. 6 (2015).

  32. Mardanov, A. V. et al. Complete genome sequence of strain 1860, a crenarchaeon of the genus Pyrobaculum able to grow with various electron acceptors. J. Bacteriol. 194, 727–728 (2012).

    Article  Google Scholar 

  33. Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl Acad. Sci. USA 111, 12883–12888 (2014).

    Article  Google Scholar 

  34. Feinberg, L. F., Srikanth, R., Vachet, R. W. & Holden, J. F. Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl. Environ. Microbiol. 74, 396–402 (2008).

    Article  Google Scholar 

  35. Lovley, D. R., Phillips, E. J. P., Lonergan, D. J. & Widman, P. K. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl. Environ. Microbiol. 61, 2132–2138 (1995).

    Google Scholar 

  36. Thony-Meyer, L. Haem-polypeptide interactions during cytochrome c maturation. Biochim. Biophys. Acta-Bioenerg. 1459, 316–324 (2000).

    Article  Google Scholar 

  37. Stevens, J. M., Daltrop, O., Allen, J. W. A. & Ferguson, S. J. C-type cytochrome formation: chemical and biological enigmas. Acc. Chem. Res. 37, 999–1007 (2004).

    Article  Google Scholar 

  38. Malvankar, N. S., Yalcin, S. E., Tuominen, M. T. & Lovley, D. R. Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat. Nanotech. 9, 1012–1017 (2014).

    Article  Google Scholar 

  39. Malvankar, N. S. et al. Structural basis for metallic-like conductivity in microbial nanowires. mBio 6, e00084-00015 (2015).

    Article  Google Scholar 

  40. Lassak, K., Ghosh, A. & Albers, S. V. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures. Res. Microbiol. 163, 630–644 (2012).

    Article  Google Scholar 

  41. Makarova, K. S., Koonin, E. V. & Albers, S. V. Diversity and evolution of type IV pili systems in Archaea. Front. Microbiol. 7, 667 (2016).

    Article  Google Scholar 

  42. Szabo, Z. et al. Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J. Bacteriol. 189, 772–778 (2007).

    Article  Google Scholar 

  43. Esquivel, R. N., Xu, R. & Pohlschroder, M. Novel archaeal adhesion pilins with a conserved N terminus. J. Bacteriol. 195, 3808–3818 (2013).

    Article  Google Scholar 

  44. Tan, Y. et al. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity. mBio 8, e02203-02216 (2017).

    Article  Google Scholar 

  45. Langner, H. W., Jackson, C. R., Mcdermott, T. R. & Inskeep, W. P. Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ. Sci. Technol. 35, 3302–3309 (2001).

    Article  Google Scholar 

  46. Colman, D. R. et al. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol. Ecol. 92, fiw137 (2016).

    Article  Google Scholar 

  47. Boyd, E. S. et al. Isolation, characterization, and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park. Appl. Environ. Microbiol. 73, 6669–6677 (2007).

    Article  Google Scholar 

  48. Boyd, E. S., Cummings, D. E. & Geesey, G. G. Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microb. Ecol. 54, 170–182 (2007).

    Article  Google Scholar 

  49. Hamilton, T. L., Peters, J. W., Skidmore, M. L. & Boyd, E. S. Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J. 7, 1402–1412 (2013).

    Article  Google Scholar 

  50. Urschel, M. R., Hamilton, T. L., Roden, E. E. & Boyd, E. S. Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote. FEMS Microbiol. Ecol. 92, fiw069 (2016).

    Article  Google Scholar 

  51. Fogo, J. K. & Popowsky, M. Spectrophotometric determination of hydrogen sulfide - methylene blue method. Anal. Chem. 21, 732–734 (1949).

    Article  Google Scholar 

  52. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).

    Article  Google Scholar 

  53. Cypionka, H. & Pfennig, N. Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch. Microbiol. 143, 396–399 (1986).

    Article  Google Scholar 

  54. Amend, J. P. & Shock, E. L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol. Rev. 25, 175–243 (2001).

    Article  Google Scholar 

  55. Helgeson, H. C. Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures. Phys. Chem. Earth. 13, 133–177 (1981).

    Article  Google Scholar 

  56. McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation grant EAR-1123689 to E.S.B. and EAR-1123649 to E.L.S. and NASA Exobiology and Evolutionary Biology Grant (NNX13AI11G) to E.S.B. The NASA Astrobiology Institute is supported by grant NNA13AA94A to E.E.R. and E.S.B. and grant NNA15BB02A to E.L.S. and E.S.B. M.J.A. acknowledges support from the CONICYT Becas-Chile Scholarship program.

Author information

Authors and Affiliations

Authors

Contributions

M.J.A. and E.S.B. designed and conducted the experiment. E.E.R. assisted with genomic sequencing. E.L.S. and E.E.R. assisted with bioenergetic calculations. All authors contributed to the writing of this paper.

Corresponding author

Correspondence to Eric S. Boyd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amenabar, M., Shock, E., Roden, E. et al. Microbial substrate preference dictated by energy demand rather than supply. Nature Geosci 10, 577–581 (2017). https://doi.org/10.1038/ngeo2978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing