Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of Hadean granites by melting of igneous crust

Abstract

The oldest known samples of Earth, with ages of up to 4.4 Gyr, are detrital zircon grains in meta-sedimentary rocks of the Jack Hills in Australia. These zircons offer insights into the magmas from which they crystallized, and, by implication, igneous activity and tectonics in the first 500 million years of Earth’s history, the Hadean eon. However, the compositions of these magmas and the relative contributions of igneous and sedimentary components to their sources have not yet been resolved. Here we compare the trace element concentrations of the Jack Hills zircons to those of zircons from the locality where igneous (I-) and sedimentary (S-) type granites were first distinguished. We show that the Hadean zircons crystallized predominantly from I-type magmas formed by melting of a reduced, garnet-bearing igneous crust. Further, we propose that both the phosphorus content of zircon and the ratio of phosphorus to rare earth elements can be used to distinguish between detrital zircon grains from I- and S-type sources. These elemental discriminants provide a new geochemical tool to assess the relative contributions of primeval magmatism and melting of recycled sediments to the continents over geological time.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trace element cumulative frequency diagrams for zircons from I- and S-type granites of the Lachlan Fold Belt, and from the Jack Hills.
Figure 2: Relationship between the concentrations of REE + Y and P in zircons from the LFB (solid symbols, S-type; open symbols, I-type) and JH (red crosses).
Figure 3: Difference between zircon REE concentrations for I-type granites of the LFB and the JH as a function of ionic radius.

Similar content being viewed by others

References

  1. Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986).

    Article  Google Scholar 

  2. Coogan, L. A. & Hinton, R. W. Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34, 633–636 (2006).

    Article  Google Scholar 

  3. Carley, T. L. et al. Iceland is not a magmatic analog for the Hadean: evidence from the zircon record. Earth Planet. Sci. Lett. 405, 85–97 (2014).

    Article  Google Scholar 

  4. Grimes, C. B. et al. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35, 643–646 (2007).

    Article  Google Scholar 

  5. Harrison, T. M., Watson, E. B. & Aikman, A. B. Temperature spectra of zircon crystallization in plutonic rocks. Geology 35, 635–638 (2007).

    Article  Google Scholar 

  6. Bell, E. A., Boehnke, P. & Harrison, T. M. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochim. Cosmochim. Acta 191, 187–202 (2016).

    Article  Google Scholar 

  7. Cavosie, A. J., Valley, J. W., Wilde, S. A. & E. I. M. F. Correlated microanalysis of zircon: trace element, δ18O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3,900 Ma detrital grains. Geochim. Cosmochim. Acta 70, 5601–5616 (2006).

  8. Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).

    Article  Google Scholar 

  9. Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).

    Article  Google Scholar 

  10. Vervoort, J. D. & Kemp, A. I. S. Clarifying the zircon Hf isotope record of crust-mantle evolution. Chem. Geol. 425, 65–75 (2016).

    Article  Google Scholar 

  11. Hopkins, M. D., Harrison, T. M. & Manning, C. E. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008).

    Article  Google Scholar 

  12. Hopkins, M. D., Harrison, T. M. & Manning, C. E. Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth Planet. Sci. Lett. 298, 367–376 (2010).

    Article  Google Scholar 

  13. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  Google Scholar 

  14. Kenny, G. G., Whitehouse, M. J. & Kamber, B. S. Differentiated impact melt sheets may be a potential source of Hadean detrital zircon. Geology 44, 435–438 (2016).

    Article  Google Scholar 

  15. Chappell, B. W. & White, A. J. R. I- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb. 83, 1–26 (1992).

    Google Scholar 

  16. Ickert, R. B. & Williams, I. S. U–Pb zircon geochronology of Silurian–Devonian granites in southeastern Australia: implications for the timing of the Benambran Orogeny and the I–S dichotomy. Aust. J. Earth Sci. 58, 501–516 (2011).

    Article  Google Scholar 

  17. Roberts, M. P. & Clemens, J. D. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 21, 825–828 (1993).

    Article  Google Scholar 

  18. Clemens, J. D. & Stevens, G. What controls chemical variation in granitic magmas? Lithos 134–135, 317–329 (2012).

    Article  Google Scholar 

  19. Kemp, A. I. S. et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315, 980–983 (2007).

    Article  Google Scholar 

  20. Chappell, B. W. Tectonic evolution of the eastern Australian fold belts from a granite-based perspective: 1998 Mawson lecture. Aust. Geol. 109, 24–30 (1988).

    Google Scholar 

  21. London, D. Phosphorus in S-type magmas: the P2O5 content of feldspars from peraluminous granites, pegmatites, and rhyolites. Am. Mineral. 77, 126–145 (1992).

    Google Scholar 

  22. Pichavant, M., Montel, J.-M. & Richard, L. R. Apatite solubility in peraluminous liquids: experimental data and an extension of the Harrison–Watson model. Geochim. Cosmochim. Acta 56, 3855–3861 (1992).

    Article  Google Scholar 

  23. Sawka, W. N., Banfield, J. F. & Chappell, B. W. A weathering-related origin of widespread monazite in S-type granites. Geochim. Cosmochim. Acta 50, 171–175 (1986).

    Article  Google Scholar 

  24. Burnham, A. D. & Berry, A. J. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim. Cosmochim. Acta 95, 196–212 (2012).

    Article  Google Scholar 

  25. Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79–82 (2011).

    Article  Google Scholar 

  26. Bell, E. A., Boehnke, P., Hopkins-Wielicki, M. D. & Harrison, T. M. Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons. Lithos 234–235, 15–26 (2015).

    Article  Google Scholar 

  27. Rasmussen, B., Fletcher, I. R., Muhling, J. R., Gregory, C. J. & Wilde, S. A. Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: implications for the Hadean Earth. Geology 39, 1143–1146 (2011).

    Article  Google Scholar 

  28. Barbarin, B. Genesis of the two main types of peraluminous granitoids. Geology 24, 295–298 (1996).

    Article  Google Scholar 

  29. Darling, J., Storey, C. & Hawkesworth, C. Impact melt sheet zircons and their implications for the Hadean crust. Geology 37, 927–930 (2009).

    Article  Google Scholar 

  30. Cameron, E. D., Valley, J. W., Ortiz-Cordero, D., Kitajima, K. & Cavosie, A. J. Detrital Jack Hills zircon-quartz δ18O analysis rests alteration of zircon and zircon inclusions. Goldschmidt Conference Abstracts abstr. 349 (2016).

  31. Valley, J. W. in Zircon: Reviews in Mineralogy and Geochemistry Vol. 53 (eds Hanchar, J. M. & Hoskin, P. W. O.) 343–385 (Mineralogical Society of America/Geochemical Society, 2003).

    Book  Google Scholar 

  32. Sánchez-Garrido, C. J. M. G. et al. Diversity in Earth’s early felsic crust: paleoarchean peraluminous granites of the Barberton Greenstone Belt. Geology 39, 963–966 (2011).

    Article  Google Scholar 

  33. Stepanov, A. S., Hermann, J., Rubato, D. & Rapp, R. P. Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem. Geol. 300–301, 200–220 (2012).

    Article  Google Scholar 

  34. Prowatke, S. & Klemme, S. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim. Cosmochim. Acta 69, 695–709 (2005).

    Article  Google Scholar 

  35. Therriault, A. M., Fowler, A. D. & Grieve, R. A. F. The Sudbury Igneous Complex: a differentiated impact melt sheet. Econ. Geol. 97, 1521–1540 (2002).

    Article  Google Scholar 

  36. Wielicki, M. M., Harrison, T. M., Schmitt, A. K., Boehnke, P. & Bell, E. A. Differentiated impact melt sheets may be a potential source of Hadean detrital zircon: COMMENT. Geology 44, e398 (2016).

    Article  Google Scholar 

  37. Chappell, B. W., White, A. J. R. & Wyborn, D. The importance of residual source material (restite) in granite petrogenesis. J. Petrol. 28, 1111–1118 (1987).

    Article  Google Scholar 

  38. Stevens, G., Villaros, A. & Moyen, J.-F. Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35, 9–12 (2007).

    Article  Google Scholar 

  39. Linnen, R. L. & Keppler, H. Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim. Cosmochim. Acta 66, 3293–3301 (2002).

    Article  Google Scholar 

  40. Smythe, D. J. & Brenan, J. M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth Planet. Sci. Lett. 453, 260–266 (2016).

    Article  Google Scholar 

  41. Trail, D., Tailby, N. D., Sochko, M. & Ackerson, M. R. Possible biosphere-lithosphere interactions preserved in igneous zircon and implications for Hadean Earth. Astrobiology 15, 575–586 (2015).

    Article  Google Scholar 

  42. Foden, J., Sossi, P. A. & Wawryk, C. M. Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos 212–215, 32–44 (2015).

    Article  Google Scholar 

  43. Wang, Q. et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: trace element characteristics and their application to detrital zircon provenance study. J. Asian Earth Sci. 53, 59–66 (2012).

    Article  Google Scholar 

  44. Yang, X., Gaillard, F. & Scaillet, B. A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology. Earth Planet. Sci. Lett. 393, 210–219 (2014).

    Article  Google Scholar 

  45. Rapp, R. P. & Watson, E. B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891–931 (1995).

    Article  Google Scholar 

  46. Moyen, J.-F. & Stevens, G. in Archean Geodynamics and Environments Geophysical Monograph Series 164 (eds Benn, K., Mareschal, J.-C. & Condie, K. C.) 149–175 (2006).

    Book  Google Scholar 

  47. Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 7, 529–533 (2013).

    Article  Google Scholar 

  48. Hoskin, P. W. & Ireland, T. R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28, 627–630 (2000).

    Article  Google Scholar 

  49. Whitehouse, M. J. & Kamber, B. S. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation. Earth Planet. Sci. Lett. 204, 333–346 (2002).

    Article  Google Scholar 

  50. Bouvier, A. S. et al. Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. Contrib. Mineral. Petrol. 163, 745–768 (2012).

    Article  Google Scholar 

  51. Chappell, B. W. Advances in X-ray Analysis 263–276 (Springer, 1991).

    Book  Google Scholar 

  52. Wiedenbeck, M. et al. Further characterisation of the 91500 zircon crystal. Geostand. Geoanal. Res. 28, 9–39 (2004).

    Article  Google Scholar 

  53. Hinton, R. W. & Upton, B. G. J. The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta 55, 3287–3302 (1991).

    Article  Google Scholar 

  54. Onuma, N., Higuchi, H., Wakita, H. & Nagasawa, H. Trace element partition between two pyroxenes and the host lava. Earth Planet. Sci. Lett. 5, 47–51 (1968).

    Article  Google Scholar 

  55. Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).

    Article  Google Scholar 

  56. Rubatto, D. & Hermann, J. Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem. Geol. 241, 38–61 (2007).

    Article  Google Scholar 

  57. Sano, Y., Terada, K. & Fukuoka, T. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol. 184, 217–230 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Ickert and I. Williams for providing the zircons, N. Badullovich for preparing some of the samples, and C. Allen for assistance with LA-ICP-MS. A.J.B. thanks the Australian Research Council for the award of a Future Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.J.B. conceived the research project, A.D.B. performed the analyses and processed the data, and both authors contributed to the data interpretation and preparation of the manuscript.

Corresponding author

Correspondence to A. D. Burnham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 225 kb)

Supplementary Information

Supplementary Information (XLSX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnham, A., Berry, A. Formation of Hadean granites by melting of igneous crust. Nature Geosci 10, 457–461 (2017). https://doi.org/10.1038/ngeo2942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing