Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A post-accretionary lull in large impacts on early Mars

Abstract

The early impact bombardment of Mars has been linked to the bombardment history of the inner Solar System as a whole. However, the timing and number of basin-forming impacts on Mars are poorly constrained. The Borealis basin—thought to be the largest and oldest known Martian impact basin—forms the crustal dichotomy between the northern lowlands and southern highlands. Four unambiguous large basins post-dating Borealis have been identified, but as many as 32 additional basins larger than 1,000 km in diameter have been proposed. Here we use gravity and topography analyses to show that the crustal dichotomy boundary was excavated by only one later impact basin (Isidis), which probabilistically indicates that fewer than 12 large basins across the globe could post-date the boundary and pre-date the established younger basins. Moreover, the relatively pristine topography and crustal thickness at the dichotomy boundary indicates that younger basins should be similarly well preserved. This suggests that the post-Borealis large basin population is limited to only the four known younger basins, with estimated ages between 3.8 and 4.1 Gyr ago (Ga). We present geochemical arguments that Borealis dates to near 4.5 Ga. Combined with Monte Carlo simulations, we argue that, instead of a gradually declining impactor flux, a lull in large basin-forming impacts occurred between about 4.1 and 4.4 Ga on Mars, separating the endgame of accretion from a putative late heavy bombardment similar to that proposed for the Moon and asteroid belt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geophysical signatures of known and simulated of basins.
Figure 2: Crustal thickness transitions across the dichotomy and known basins.

Similar content being viewed by others

References

  1. Carr, M. H. & Head, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010).

    Article  Google Scholar 

  2. Nimmo, F. & Tanaka, K. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133–161 (2004).

    Article  Google Scholar 

  3. Andrews-Hanna, J. C. & Zuber, M. T. Elliptical craters and basins on the terrestrial planets. GSA Spec. Pap. 465, 1–13 (2010).

    Google Scholar 

  4. Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008).

    Article  Google Scholar 

  5. Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L. & Sakimoto, S. E. H. Ancient lowlands on Mars. Geophys. Res. Lett. 29, 1384 (2002).

    Article  Google Scholar 

  6. Frey, H. V. Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, E08S91 (2006).

    Article  Google Scholar 

  7. Frey, H. V. & Mannoia, L. M. A revised, rated, and dated catalog of very large candidate impact basins on Mars. In 44th Lunar Planet. Sci. Conf. abstr. 2501 (2013).

  8. Frey, H. Ages of very large impact basins on Mars: implications for the late heavy bombardment in the inner solar system. Geophys. Res. Lett. 35, L13203 (2008).

    Article  Google Scholar 

  9. Wilhelms, D. E. & Squyres, S. W. The martian hemispheric dichotomy may be due to a giant impact. Nature 309, 138–140 (1984).

    Article  Google Scholar 

  10. Irwin, R. P. & Watters, T. R. Geology of the Martian crustal dichotomy boundary: age, modifications, and implications for modeling efforts. J. Geophys. Res. 115, E11006 (2010).

    Article  Google Scholar 

  11. Marinova, M. M., Aharonson, O. & Asphaug, E. Geophysical consequences of planetary-scale impacts into a Mars-like planet. Icarus 211, 960–985 (2011).

    Article  Google Scholar 

  12. Marinova, M. M., Aharonson, O. & Asphaug, E. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008).

    Article  Google Scholar 

  13. Nimmo, F. & Stevenson, D. J. Estimates of Martian crustal thickness from viscous relaxation of topography. J. Geophys. Res. 106, 5085–5098 (2001).

    Article  Google Scholar 

  14. Mohit, P. S. & Phillips, R. J. Viscous relaxation on early Mars: a study of ancient impact basins. Geophys. Res. Lett. 34, L21204 (2007).

    Article  Google Scholar 

  15. Searls, M. L., Banerdt, W. B. & Phillips, R. J. Utopia and Hellas basins, Mars: twins separated at birth. J. Geophys. Res. 111, E08005 (2006).

    Article  Google Scholar 

  16. Ritzer, J. A. & Hauck, S. A. Lithospheric structure and tectonics at Isidis Planitia, Mars. Icarus 201, 528–539 (2009).

    Article  Google Scholar 

  17. Turcotte, D. L., Willemann, R. J., Haxby, W. F. & Norberry, J. Role of membrane stresses in support of planetary topography. J. Geophys. Res. 86, 3951–3959 (1981).

    Article  Google Scholar 

  18. Robbins, S. J., Hynek, B. M., Lillis, R. J. & Bottke, W. F. Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225, 173–184 (2013).

    Article  Google Scholar 

  19. Werner, S. C. The early martian evolution—constraints from basin formation ages. Icarus 195, 45–60 (2008).

    Article  Google Scholar 

  20. Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  Google Scholar 

  21. Brandon, A. D. et al. Evolution of the martian mantle inferred from the187Re- 187Os isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochim. Cosmochim. Acta 76, 206–235 (2012).

    Article  Google Scholar 

  22. Borg, L. E., Brennecka, G. A. & Symes, S. J. K. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. 175, 150–167 (2016).

  23. Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. Implications of an impact origin for the martian hemispheric dichotomy. Nature 453, 1220–1223 (2008).

    Article  Google Scholar 

  24. Humayun, M. et al. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503, 513–516 (2013).

    Article  Google Scholar 

  25. Agee, C. B. et al. Unique meteorite from early breccia Northwest Africa 7034. Science 339, 780–785 (2013).

    Article  Google Scholar 

  26. Bogard, D. D. K-Ar ages of meteorites: clues to parent-body thermal histories. Chem. Erde 71, 207–226 (2011).

    Article  Google Scholar 

  27. Marchi, S. et al. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6, 303–307 (2013).

    Article  Google Scholar 

  28. Bottke, W. F. et al. Dating the Moon-forming impact event with asteroidal meteorites. Science 348, 321–323 (2015).

    Article  Google Scholar 

  29. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  Google Scholar 

  30. Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

    Article  Google Scholar 

  31. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    Article  Google Scholar 

  32. Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).

    Article  Google Scholar 

  33. Schaeffer, O. A. & Husain, L. Chronology of lunar basin formation. In 5th Lunar Planet. Sci. Conf. Vol. 2, 1541–1555 (1974).

  34. Bottke, W. F. & Norman, M. D. The Late Heavy Bombardment. Annu. Rev. Earth Planet. Sci. http://dx.doi.org/10.1146/annurev-earth-063016-020131 (2017).

  35. Hartmann, W. K. Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005).

    Article  Google Scholar 

  36. Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001).

    Article  Google Scholar 

  37. Phillips, R. J. et al. Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001).

    Article  Google Scholar 

  38. Anderson, R. C. et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res. 106, 20563–20585 (2001).

    Article  Google Scholar 

  39. Fassett, C. I. & Head, J. W. The timing of martian valley network activity: constraints from buffered crater counting. Icarus 195, 61–89 (2008).

    Article  Google Scholar 

  40. Howard, A.D., Irwin, R. P. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14 (2005).

    Article  Google Scholar 

  41. Irwin, R. P., Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res. 110, E12S15 (2005).

    Article  Google Scholar 

  42. Roberts, J. H., Lillis, R. J. & Manga, M. Giant impacts on early mars and the cessation of the martian dynamo. J. Geophys. Res. 114, E04009 (2009).

    Google Scholar 

  43. Brain, D. A. & Jakosky, B. M. Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering. J. Geophys. Res. 103, 22689–22694 (1998).

    Article  Google Scholar 

  44. Melosh, H. J. & Vickery, A. M. Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989).

    Article  Google Scholar 

  45. Segura, T. L., McKay, C. P. & Toon, O. B. An impact-induced, stable, runaway climate on Mars. Icarus 220, 144–148 (2012).

    Article  Google Scholar 

  46. Neumann, G. A. et al. Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109, E08002 (2004).

    Article  Google Scholar 

  47. Neumann, G. A., Lemoine, F. G., Smith, D. E. & Zuber, M. T. MARSCRUST3 - A crustal thickness inversion from recent MRO gravity solutions. In 39th Lunar Planet. Sci. Conf. abstr. 2167 (2008).

  48. Konopliv, A. S. et al. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011).

    Article  Google Scholar 

  49. Smith, D. E. et al. Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001).

    Article  Google Scholar 

  50. Wieczorek, M. A. Thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109, E01009 (2004).

    Article  Google Scholar 

  51. Wieczorek, M. A. & Phillips, R. J. Potential anomalies on a sphere: applications to the thickness of the lunar crust. J. Geophys. Res. 103, 1715–1724 (1998).

    Article  Google Scholar 

  52. Wieczorek, M. A. & Simons, F. J. Localized spectral analysis on the sphere. Geophys. J. Int. 162, 655–675 (2005).

    Article  Google Scholar 

  53. Wieczorek, M. A. SHTOOLS - Tools for working with spherical harmonics (v2.9.1). Zenodo http://dx.doi.org/10.5281/zenodo.12158 (2014).

  54. Banerdt, W. B. Support of long-wavelength loads on Venus and implication for internal structure. J. Geophys. Res. 91, 403–419 (1986).

    Article  Google Scholar 

  55. Beuthe, M. Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets. Geophys. J. Int. 172, 817–841 (2008).

    Article  Google Scholar 

  56. Andrews-Hanna, J. C., Zuber, M. T. & Hauck, S. A. Strike-slip faults on Mars: observations and implications for global tectonics and geodynamics. J. Geophys. Res. 113, E08002 (2008).

    Article  Google Scholar 

  57. Wieczorek, M. A. & Phillips, R. J. Lunar multiring basins and the cratering process. Icarus 139, 246–259 (1999).

    Article  Google Scholar 

  58. Hartmann, W. K. & Kuiper, G. P. Concentric structure surrounding lunar basins. Commun. Lunar Planet. Lab. 1, 51–66 (1962).

    Google Scholar 

  59. Fassett, C. I. & Head, J. W. Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011).

    Article  Google Scholar 

  60. Ivanov, B. A. Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001).

    Article  Google Scholar 

  61. Stoffler, D. Cratering history and lunar chronology. Rev. Mineral. Geochem. 60, 519–596 (2006).

    Article  Google Scholar 

  62. Norman, M. D., Taylor, L. A., Shih, C. & Nyquist, L. E. Crystal accumulation in a 4.2 Ga lunar impact melt. Geochim. Cosmochim. Acta 172, 410–429 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Canup, H. Levison, S. Marchi, A. Morbidelli, D. Moser, D. Nesvorny, J. Salmon and D. Vokrouhlicky for many useful discussions. W.F.B. and J.C.A.-H. participation was supported by NASA’s SSERVI program, ‘Institute of the Science of Exploration Targets (ISET)’, institute grant numbers NNA14AB03A.

Author information

Authors and Affiliations

Authors

Contributions

W.F.B. performed the Monte Carlo models. J.C.A.-H. performed the geophysical analyses. Both authors contributed equally to the discussions, interpretations, and preparation of the manuscript.

Corresponding author

Correspondence to William F. Bottke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottke, W., Andrews-Hanna, J. A post-accretionary lull in large impacts on early Mars. Nature Geosci 10, 344–348 (2017). https://doi.org/10.1038/ngeo2937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing