Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A lower limit to atmospheric CO2 concentrations over the past 800,000 years

Abstract

Global temperatures and atmospheric CO2 concentrations varied widely over the glacial cycles of the past 800,000 years. But despite this variability, Antarctic ice cores have shown that CO2 concentrations were very similar during all the coldest points of these cycles. Remarkably, the recurring minimum CO2 concentrations (190 ± 7 ppm) fall on the lower bound of any known in Earth history. Here we show that although the volume of terrestrial ice sheets was normally distributed over the past 800,000 years, as might be expected from the approximately normal distribution of the orbital forcing that drove the glacial cycles, Antarctic temperatures have a strong cold mode, whereas CO2 concentrations have both a cold mode and a central mode. Although multiple explanations are possible, the recurring CO2 minima and pronounced cold modes are consistent with a strong negative feedback to decreasing CO2 that resisted further cooling on timescales shorter than 10,000 years. We suggest that one possible negative feedback is CO2-limitation of photosynthesis, either directly or via CO2-limitation of N2 fixation, which could have inhibited further lowering of CO2 by reducing carbon storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glacial cycles over the past 800 kyr.
Figure 2: Frequency distributions of insolation, sea level, Antarctic temperature and CO2 over glacial cycles.
Figure 3: Schematic illustration of feedbacks acting on temperature and atmospheric CO2.

Similar content being viewed by others

References

  1. Broecker, W. S. & Denton, G. H. The role of ocean–atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501 (1989).

    Article  Google Scholar 

  2. Jaccard, S. L. et al. Two modes of change in Southern Ocean productivity over the past million years. Science 339, 1419–1423 (2013).

    Article  Google Scholar 

  3. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  Google Scholar 

  4. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  Google Scholar 

  5. Broecker, W. S., Yu, J. & Putnam, A. E. Two contributors to the glacial CO2 decline. Earth Planet. Sci. Lett. 429, 191–196 (2015).

    Article  Google Scholar 

  6. Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2 . Earth Planet. Sci. Lett. 286, 479–491 (2009).

    Article  Google Scholar 

  7. Lund, D. C. et al. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations. Science 351, 478–482 (2016).

    Article  Google Scholar 

  8. Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).

    Article  Google Scholar 

  9. Zech, R. A permafrost glacial hypothesis—permafrost carbon might help explaining the Pleistocene ice ages. Quat. Sci. J. 61, 84–92 (2012).

    Google Scholar 

  10. Cartapanis, O., Bianchi, D., Jaccard, S. L. & Galbraith, E. D. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima. Nat. Commun. 7, 10796 (2016).

    Article  Google Scholar 

  11. Royer, D. L. in Treatise on Geochemistry Vol. 6 2nd edn, 251–267 (Elsevier, 2014).

    Book  Google Scholar 

  12. Pagani, M., Caldeira, K., Berner, R. & Beerling, D. J. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460, 85–88 (2009).

    Article  Google Scholar 

  13. Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).

    Article  Google Scholar 

  14. Montañez, I. P. et al. Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles. Nat. Geosci. 9, 824–828 (2016).

    Article  Google Scholar 

  15. Spratt, R. M. & Lisiecki, L. E. A late Pleistocene sea level stack. Clim. Past 12, 1079–1092 (2016).

    Article  Google Scholar 

  16. Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

    Article  Google Scholar 

  17. Abe-Ouchi, A. et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–193 (2013).

    Article  Google Scholar 

  18. Paillard, D. & Parrenin, F. The Antarctic ice sheet and the triggering of deglaciations. Earth Planet. Sci. Lett. 227, 263–271 (2004).

    Article  Google Scholar 

  19. Gildor, H. & Tziperman, E. A sea ice climate switch mechanism for the 100-kyr glacial cycles. J. Geophys. Res. 106, 9117–9133 (2001).

    Article  Google Scholar 

  20. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Article  Google Scholar 

  21. Manabe, S. & Bryan, K. CO2-induced change in a coupled ocean–atmosphere model and its paleoclimatic implications. J. Geophys. Res. 90, 11689–11707 (1985).

    Article  Google Scholar 

  22. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  Google Scholar 

  23. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).

    Article  Google Scholar 

  24. Brovkin, V., Ganopolski, A., Archer, D. & Munhoven, G. Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Clim. Past 8, 251–264 (2012).

    Article  Google Scholar 

  25. Gildor, H., Tziperman, E. & Toggweiler, J. R. Sea ice switch mechanism and glacial-interglacial CO2 variations. Glob. Biogeochem. Cycles 16, 3 (2002).

    Article  Google Scholar 

  26. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    Article  Google Scholar 

  27. Pierrehumbert, R. T., Abbot, D. S., Voigt, A. & Koll, D. Climate of the neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417–460 (2011).

    Article  Google Scholar 

  28. Zeebe, R. E. & Caldeira, K. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nat. Geosci. 1, 312–315 (2008).

    Article  Google Scholar 

  29. Kump, L. R., Brantley, S. L. & Arthur, M. A. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000).

    Article  Google Scholar 

  30. Ridgwell, A. & Hargreaves, J. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob. Biogeochem. Cycles 21, GB2008 (2007).

    Article  Google Scholar 

  31. Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    Article  Google Scholar 

  32. Quirk, J., Leake, J. R., Banwart, S. A., Taylor, L. L. & Beerling, D. J. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline. Biogeosciences 11, 321–331 (2014).

    Article  Google Scholar 

  33. Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the last glacial maximum. Nat. Geosci. 5, 74–79 (2012).

    Article  Google Scholar 

  34. Riebesell, U. & Tortell, P. D. in Ocean Acidification (eds Gattuso, J.-P. & Hansson, L.) 99–121 (Oxford Univ. Press, 2011).

    Google Scholar 

  35. Hutchins, D. A. et al. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 52, 1293–1304 (2007).

    Article  Google Scholar 

  36. Hutchins, D. A., Fu, F.-X., Webb, E. A., Walworth, N. & Tagliabue, A. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat. Geosci. 6, 790–795 (2013).

    Article  Google Scholar 

  37. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  Google Scholar 

  38. Galbraith, E. D. & Jaccard, S. L. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen isotopes and oxygenation proxies. Quat. Sci. Rev. 109, 38–48 (2015).

    Article  Google Scholar 

  39. Galbraith, E. D. et al. The acceleration of oceanic denitrification during deglacial warming. Nat. Geosci. 6, 579–584 (2013).

    Article  Google Scholar 

  40. Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).

    Article  Google Scholar 

  41. Ganeshram, R. S., Pedersen, T. F., Calvert, S. & François, R. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415, 156–159 (2002).

    Article  Google Scholar 

  42. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    Article  Google Scholar 

  43. Eugster, O., Gruber, N., Deutsch, C., Jaccard, S. L. & Payne, M. R. The dynamics of the marine nitrogen cycle across the last deglaciation. Paleoceanography 28, 116–129 (2013).

    Article  Google Scholar 

  44. Crucifix, M. Oscillators and relaxation phenomena in Pleistocene climate theory. Phil. Trans. R. Soc. A 370, 1140–1165 (2012).

    Article  Google Scholar 

  45. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  46. Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

    Article  Google Scholar 

  47. Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012).

    Article  Google Scholar 

  48. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  49. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Jaccard, D. Hutchins and members of the CIFAR Earth System Evolution Program for helpful discussions. E. Wolff, C. Pelejero, E. Calvo and S. Hall provided constructive comments on the manuscript. Financial support was provided by the Spanish Ministry of Economy and Competitiveness through the María de Maeztu Programme for Centres of Excellence in R&D (MDM-2015-0552), and the Swiss National Science Foundation through an Early Postdoc.Mobility grant.

Author information

Authors and Affiliations

Authors

Contributions

E.D.G. initiated the study and wrote the first draft of the paper. S.E. contributed to the development of figures, analysis and revisions of the text.

Corresponding author

Correspondence to E. D. Galbraith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galbraith, E., Eggleston, S. A lower limit to atmospheric CO2 concentrations over the past 800,000 years. Nature Geosci 10, 295–298 (2017). https://doi.org/10.1038/ngeo2914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing