Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subduction megathrust creep governed by pressure solution and frictional–viscous flow

Abstract

Subduction megathrust slip speeds range from slow creep at plate convergence rates (centimetres per year) to seismic slip rates (metres per second) in the largest earthquakes on Earth. The deformation mechanisms controlling whether fast slip or slow creep occurs, however, remain unclear. Here, we present evidence that pressure solution creep (fluid-assisted stress driven mass transfer) is an important deformation mechanism in megathrust faults. We quantify megathrust strength using a laboratory-constrained microphysical model for fault friction, involving viscous pressure solution and frictional sliding. We find that at plate-boundary deformation rates, aseismic, frictional–viscous flow is the preferred deformation mechanism at temperatures above 100 °C. The model thus predicts aseismic creep at temperatures much cooler than the onset of crystal plasticity, unless a boundary condition changes. Within this model framework, earthquakes may nucleate when a local increase in strain rate triggers velocity-weakening slip, and we speculate that slip area and event magnitude increase with increasing spacing of strong, topographically derived irregularities in the subduction interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of pressure-solution microstructures in a sample from the Chrystalls Beach Complex, New Zealand.
Figure 2: Strength curves calculated along a subduction thrust interface with properties representative of the northern Hikurangi margin.
Figure 3: Relations between slip velocity and frictional behaviour.
Figure 4: Representations of the effect of frictional–viscous flow on megathrust seismic style.

Similar content being viewed by others

References

  1. Peng, Z. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow slip phenomena. Nat. Geosci. 3, 599–607 (2010).

    Article  Google Scholar 

  2. Wang, K. & Bilek, S. L. Do subducting seamounts generate or stop large earthquakes? Geology 39, 819–822 (2011).

    Article  Google Scholar 

  3. Shreve, R. L. & Cloos, M. Dynamics of sediment subduction, mélange formation, and prism accretion. J. Geophys. Res. 91, 10229–10245 (1986).

    Article  Google Scholar 

  4. Bachmann, R. et al. Exposed plate interface in the European Alps reveals fabric styles and gradients related to an ancient seismogenic coupling zone. J. Geophys. Res. 114, B05402 (2009).

    Article  Google Scholar 

  5. Fagereng, Å. & Sibson, R. H. Mélange rheology and seismic style. Geology 38, 751–754 (2010).

    Article  Google Scholar 

  6. Rowe, C. D., Meneghini, F. & Moore, J. C. in Geology of the Earthquake Source: A Volume in Honour of Rick Sibson (eds Fagereng, Å., Toy, V. G. & Rowland, J. V.) 77–95 (Geological Society of London, 2011).

    Google Scholar 

  7. Heuret, A., Lallemand, S., Funiciello, F., Pitomallo, C. & Faccenna, C. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem. Geophys. Geosyst. 12, Q01004 (2011).

    Article  Google Scholar 

  8. Scholz, C. H. & Campos, J. The seismic coupling of subduction zones revisited. J. Geophys. Res. 117, B05310 (2012).

    Article  Google Scholar 

  9. Rubin, A. M., Gillard, D. & Got, J.-L. Streaks of microearthquakes along creeping faults. Nature 400, 635–641 (1999).

    Article  Google Scholar 

  10. Hyndman, R. D., Yamano, M. & Oleskevich, D. A. The seismogenic zone of subduction thrust faults. Isl. Arc 6, 244–260 (1997).

    Article  Google Scholar 

  11. Wallace, L. M. et al. Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem. Geophys. Geosyst. 10, Q10006 (2009).

    Google Scholar 

  12. Mochizuki, K., Yamada, T., Shinohara, M., Yamanaka, Y. & Kanazawa, T. Weak interplate coupling by seamounts and repeating M 7 earthquakes. Science 321, 1194–1197 (2008).

    Article  Google Scholar 

  13. Power, W., Wallace, L. M., Wang, X. & Reyners, M. Tsunami hazard posed to New Zealand by the Kermadec and Southern New Hebrides subduction margins: an assessment based on plate boundary kinematics, interseismic coupling, and historical seismicity. Pure Appl. Geophys. 169, 1–36 (2012).

    Article  Google Scholar 

  14. Hsu, Y.-J., Yu, S.-B., Song, T.-R. & Bacolcol, T. Plate coupling along the Manila subduction zone between Taiwan and northern Luzon. J. Asian Earth Sci. 51, 98–108 (2012).

    Article  Google Scholar 

  15. Rowe, C. D., Moore, J. C. & Remitti, F. IODP Exp. 343/343T Scientists. The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone. Geology 41, 991–994 (2013).

    Article  Google Scholar 

  16. Gratier, J.-P. et al. Aseismic sliding of active faults by pressure solution creep: evidence from the San Andreas fault observatory at depth. Geology 39, 1131–1134 (2011).

    Article  Google Scholar 

  17. Richard, J., Gratier, J. P., Doan, M.-L., Boullier, A.-M. & Renard, F. Rock and mineral transformations in a fault zone leading to permanent creep: interactions between brittle and viscous mechanisms in the San Andreas Fault. J. Geophys. Res. 119, 8132–8153 (2014).

    Article  Google Scholar 

  18. Gratier, J.-P., Guiguet, R., Renard, F., Jenatton, L. & Bernard, D. A pressure solution creep law for quartz from indentation experiments. J. Geophys. Res. 114, B03403 (2009).

    Article  Google Scholar 

  19. Schwarz, S. & Stöckhert, B. Pressure solution in siliciclastic HP-LT rocks–constraints on the state of stress in deep levels of accretionary complexes. Tectonophysics 255, 203–209 (1996).

    Article  Google Scholar 

  20. Kawabata, K., Tanaka, H. & Kimura, G. Mass transfer and pressure solution in deformed shale of accretionary complex: examples from the Shimanto Belt, southwest Japan. J. Struct. Geol. 29, 697–711 (2007).

    Article  Google Scholar 

  21. Fagereng, Å. in Geology of the Earthquake Source: A Volume in Honour of Rick Sibson (eds Fagereng, Å., Toy, V. G. & Rowland, J. V.) 55–76 (Geological Society of London, 2011).

    Google Scholar 

  22. Fagereng, Å. & Cooper, A. F. The metamorphic history of rocks buried, accreted and exhumed in an accretionary prism: an example from the Otago Schist, New Zealand. J. Metamorph. Geol. 28, 935–954 (2010).

    Article  Google Scholar 

  23. Bos, B. & Spiers, C. J. Frictional-viscous flow of phyllosilicate-bearing fault-rock: microphysical model and implications for crustal strength profiles. J. Geophys. Res. 107, 2028 (2002).

    Article  Google Scholar 

  24. Niemeijer, A. & Spiers, C. J. in High-Strain Zones: Structure and Physical Properties (eds Bruhn, D. & Burlini, L.) 303–327 (Geological Society of London, 2005).

    Google Scholar 

  25. Den Hartog, S. A. M. & Spiers, C. J. A microphysical model for fault gouge friction applied to subduction megathrusts. J. Geophys. Res. 119, 1510–1529 (2014).

    Article  Google Scholar 

  26. Molnar, P. & England, P. Temperatures, heat flux and frictional stress near major thrust faults. J. Geophys. Res. 95, 4833–4856 (1990).

    Article  Google Scholar 

  27. Den Hartog, S. A. M., Saffer, D. M. & Spiers, C. J. The roles of quartz and water in controlling unstable slip in phyllosilicate-rich megathrust fault gouges. Earth Planets Space 66, 78 (2014).

    Article  Google Scholar 

  28. Den Hartog, S. A. M., Niemeijer, A. R. & Spiers, C. J. Friction on subduction megathrust faults: beyond the illite-muscovite transition. Earth Planet. Sci. Lett. 373, 8–19 (2013).

    Article  Google Scholar 

  29. Van Diggelen, E. W. E., De Bresser, J. H. P., Peach, C. J. & Spiers, C. J. High shear strain behaviour of synthetic muscovite fault gouges under hydrothermal conditions. J. Struct. Geol. 32, 1685–1700 (2010).

    Article  Google Scholar 

  30. Den Hartog, S. A. M. & Spiers, C. J. Influence of subduction zone conditions and gouge composition on frictional slip stability of megathrust faults. Tectonophysics 600, 75–90 (2013).

    Article  Google Scholar 

  31. Niemeijer, A. R., Spiers, C. J. & Peach, C. J. Frictional behaviour of simulated quartz fault gouges under hydrothermal conditions: results from ultra-high strain rotary shear experiments. Tectonophysics 460, 288–303 (2008).

    Article  Google Scholar 

  32. Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979).

    Article  Google Scholar 

  33. Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    Article  Google Scholar 

  34. Scholz, C. H. Earthquakes and friction laws. Nature 391, 37–42 (1998).

    Article  Google Scholar 

  35. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth. Planet. Inter. 183, 73–90 (2010).

    Article  Google Scholar 

  36. Gao, X. & Wang, K. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science 345, 1038–1041 (2014).

    Article  Google Scholar 

  37. Tester, J. W., Worley, W. G., Robinson, B. A., Grigsby, C. & Feerer, J. L. Correlating quartz dissolution kinetics in pure water from 25 to 625 °C. Geochim. Cosmochim. Acta 58, 2407–2420 (1994).

    Article  Google Scholar 

  38. Hashimoto, Y., Nakaya, T., Ito, M. & Kimura, G. Tectonolithification of sandstone prior to the onset of seismogenic subduction zone: evidence from tectonic mélange of the Shimanto Belt, Japan. Geochem. Geophys. Geosyst. 7, Q06013 (2006).

    Article  Google Scholar 

  39. Moore, J. C., Rowe, C. D. & Meneghini, F. in The Seismogenic Zone of Subduction Thrust Faults (eds Dixon, T. H. & Moore, J. C.) 288–315 (Colombia Univ. Press, 2007).

    Google Scholar 

  40. Wallace, L. M. et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science 353, 701–704 (2016).

    Article  Google Scholar 

  41. Dragert, H., Wang, K. & James, T. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Article  Google Scholar 

  42. Obara, K., Hirose, H., Yamamizu, F. & Kasahara, K. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31, L23602 (2004).

    Article  Google Scholar 

  43. Liu, Y. & Rice, J. R. Aseismic slip transients emerge spontaneously in three-dimensional rate and state modelling of subduction earthquake sequences. J. Geophys. Res. 110, B08307 (2005).

    Google Scholar 

  44. McCrory, P. A., Hyndman, R. D. & Blair, J. L. Relationship between the Cascadia fore-arc mantle wedge, nonvolcanic tremor, and the downdip limit of seismogenic rupture. Geochem. Geophys. Geosyst. 15, 1071–1095 (2014).

    Article  Google Scholar 

  45. Saffer, D. M. & Wallace, L. M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci. 8, 594–600 (2015).

    Article  Google Scholar 

  46. Ruff, L. Do trench sediments affect great earthquake occurrence in subduction zones? Pure Appl. Geophys. 129, 263–282 (1989).

    Article  Google Scholar 

  47. Wesnousky, S. G. Predicting the endpoints of earthquake ruptures. Nature 444, 358–360 (2006).

    Article  Google Scholar 

  48. Fagereng, Å. Wedge geometry, mechanical strength, and interseismic coupling of the Hikurangi subduction thrust, New Zealand. Tectonophysics 507, 26–30 (2011).

    Article  Google Scholar 

  49. Knipe, R. J. Deformation mechanisms—recognition from natural tectonites. J. Struct. Geol. 11, 127–146 (1989).

    Article  Google Scholar 

  50. Hicks, S. P. et al. The 2010 Mw 8.8 Maule, Chile earthquake: nucleation and rupture propagation controlled by a subducted topographic high. Geophys. Res. Lett. 39, L19308 (2012).

    Article  Google Scholar 

  51. Lamb, S. Shear stresses on megathrusts: implications for mountain building behind subduction zones. J. Geophys. Res. 111, B07401 (2006).

    Google Scholar 

  52. Wada, I., Wang, K., He, J. & Hyndman, R. D. Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization. J. Geophys. Res. 113, B04402 (2008).

    Article  Google Scholar 

  53. McCaffrey, R., Wallace, L. M. & Beavan, J. Slow slip and frictional transition at low temperature at the Hikurangi subduction zone. Nat. Geosci. 1, 316–320 (2008).

    Article  Google Scholar 

  54. Byerlee, J. D. Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978).

    Article  Google Scholar 

  55. Tembe, S., Lockner, D. A. & Wong, T.-F. Effect of clay content and mineralogy on frictional sliding behaviour of simulated gouges: binary and ternary mixtures of quartz, illite and montmorillonite. J. Geophys. Res. 115, B03416 (2010).

    Google Scholar 

  56. Harris, J. W. & Stocker, H. Handbook of Mathematics and Computational Science (Springer, 1998).

    Book  Google Scholar 

  57. Noda, H. Implementation into earthquake sequence simulations of a rate- and state-dependent friction law incorporating pressure solution creep. Geophys. J. Int. 205, 1108–1125 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Initial work on this project was funded through NRF Incentive Funding for Rated Researchers to Å.F. while at the University of Cape Town. We thank C. Tinguely (Cape Town) and D. Muir (Cardiff) for microprobe/SEM assistance, and A. Cross for a constructive review that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to designing the study, making the calculations, and writing the paper. Å.F. provided the microstructural observations.

Corresponding author

Correspondence to Åke Fagereng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagereng, Å., den Hartog, S. Subduction megathrust creep governed by pressure solution and frictional–viscous flow. Nature Geosci 10, 51–57 (2017). https://doi.org/10.1038/ngeo2857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing