Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mountain building on Io driven by deep faulting

Abstract

Jupiter’s volcanic moon Io possesses some of the highest relief in the Solar System: massive, isolated mountain blocks that tower up to 17 km above the surrounding plains. These mountains are likely to result from pervasive compressive stresses induced by subsidence of the surface beneath the near-continual emplacement of volcanic material. The stress state that results from subsidence and warming of Io’s lithosphere has been investigated in detail1,2,3,4; however, the mechanism of orogenesis itself and its effect on regional tectonism and volcanism has not been firmly established. Here we present viscoelastic–plastic finite element simulations demonstrating that Io’s mountains form along deep-seated thrust faults that initiate at the base of the lithosphere and propagate upward. We show that faulting fundamentally alters the stress state of Io’s lithosphere by relieving the large volcanism-induced subsidence stresses. Notably, in the upper portion of the lithosphere, stresses become tensile (near-zero differential stress). A number of processes are therefore altered post-faulting, including magma transport through the lithosphere, interactions with tidal stresses and potentially the localization of mountain formation by thermoelastic stresses. We conclude that Io’s mountains form by a unique orogenic mechanism, compared with tectonic processes operating elsewhere in the Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Galileo image mosaic of mountains on Io.
Figure 2: The simulated surface deformation and distribution of brittle failure in the lithosphere caused by subsidence.
Figure 3: Horizontally averaged profiles of differential stress as a function of depth.
Figure 4: The distribution of differential stress throughout the lithosphere.

Similar content being viewed by others

References

  1. Turtle, E. P. et al. Mountains on Io: high-resolution Galileo observations, initial interpretations, and formation models. J. Geophys. Res. 106, 33175–33200 (2001).

    Article  Google Scholar 

  2. McKinnon, W. B., Schenk, P. M. & Dombard, A. J. Chaos on Io: a model for formation of mountain blocks by crustal heating, melting, and tilting. Geology 29, 103–106 (2001).

    Article  Google Scholar 

  3. Jaeger, W. L. et al. Orogenic tectonism on Io. J. Geophys. Res. 108, 5093 (2003).

    Article  Google Scholar 

  4. Kirchoff, M. R. & McKinnon, W. B. Formation of mountains on Io: variable volcanism and thermal stresses. Icarus 201, 598–614 (2009).

    Article  Google Scholar 

  5. Carr, M. H. et al. Mountains and Calderas on Io: possible implications for lithospheric structure and magma generation. Icarus 135, 146–165 (1998).

    Article  Google Scholar 

  6. Schenk, P. M., Hargitai, H., Wilson, R., McEwen, A. & Thomas, P. The mountains of Io: global and geological perspectives from Voyager and Galileo. J. Geophys. Res. 106, 33201–33222 (2001).

    Article  Google Scholar 

  7. Turtle, E. M., Jaeger, W. L. & Schenk, P. M. in Io After Galileo (eds Lopes, R. M. C. & Spencer, J. R.) 109–132 (Springer, 2007).

    Google Scholar 

  8. Schenk, P. M. & Bulmer, M. H. Origin of mountains on Io by thrust faulting and large-scale mass movements. Science 279, 1514–1517 (1998).

    Article  Google Scholar 

  9. McEwen, A. S. et al. Galileo at Io: results from high-resolution imaging. Science 288, 1193–1198 (2000).

    Article  Google Scholar 

  10. Kirchoff, M. R., McKinnon, W. B. & Schenk, P. M. Global distribution of volcanic centers and mountains on Io: control by asthenospheric heating and implications for mountain formation. Earth Planet. Sci. Lett. 301, 22–30 (2011).

    Article  Google Scholar 

  11. Hamilton, C. W. et al. Spatial distribution of volcanoes on Io: implications for tidal heating and magma ascent. Earth Planet. Sci. Lett. 361, 272–286 (2013).

    Article  Google Scholar 

  12. Ahern, A., Radebaugh, J., Christiansen, E. & Harris, R. Structural mapping of paterae and mountains on Io: implications for crustal stresses and feature evolution, Abstr. P31C-2073, in AGU Fall Meeting (AGU, 2015).

  13. Keszthelyi, L. et al. New estimates for Io eruption temperatures: implications for the interior. Icarus 192, 491–502 (2007).

    Article  Google Scholar 

  14. McGovern, P. J., Kirchoff, M. R., White, O. L. & Schenk, P. M. Magma ascent pathways associated with large mountains on Io. Icarus 272, 246–257 (2016).

    Article  Google Scholar 

  15. Barton, C. A., Zoback, M. D. & Moos, D. Fluid flow along potentially active faults in crystalline rock. Geology 23, 683–686 (1995).

    Article  Google Scholar 

  16. Schaber, G. G. The surface of Io: geologic units, morphology, and tectonics. Icarus 43, 302–333 (1980).

    Article  Google Scholar 

  17. Heath, M. J. in Papers Presented to the Conference on Heat and Detachment in Crustal Extension on Continents and Planets 50–54 (Lunar and Planetary Institute, 1985).

    Google Scholar 

  18. McEwen, A. S. in Papers Presented to the Conference on Heat and Detachment in Crustal Extension on Continents and Planets 76–80 (Lunar and Planetary Institute, 1985).

    Google Scholar 

  19. Bunte, M. K., Williams, D. A., Greeley, R. & Jaeger, W. L. Geologic mapping of the Hiíaka and Shamshu regions of Io. Icarus 207, 868–886 (2010).

    Article  Google Scholar 

  20. Bart, G. D., Turtle, E. P., Jaeger, W. L., Keszthelyi, L. P. & Greenberg, R. Ridges and tidal stress on Io. Icarus 169, 111–126 (2004).

    Article  Google Scholar 

  21. Strom, R. G., Trask, N. J. & Guest, J. E. Tectonism and volcanism on Mercury. J. Geophys. Res. 80, 2478–2507 (1975).

    Article  Google Scholar 

  22. Watters, T. R. et al. The tectonics of Mercury: the view after MESSENGER’s first flyby. Earth Planet. Sci. Lett. 285, 283–296 (2009).

    Article  Google Scholar 

  23. Byrne, P. K. et al. Mercury’s global contraction much greater than earlier estimates. Nature Geosci. 7, 301–307 (2014).

    Article  Google Scholar 

  24. Watters, T. R. & Johnson, C. L. in Planetary Tectonics (eds Watters, T. R. & Schultz, R. A.) 121–182 (Cambridge Univ. Press, 2010).

    Google Scholar 

  25. Boyer, S. E. & Elliot, D. Thrust systems. AAPG Bull. 66, 1196–1230 (1982).

    Google Scholar 

  26. McEwen, A. S., Keszthelyi, L. P., Lopes, R., Schenk, P. M. & Spencer, J. R. in Jupiter: The Plant, Satellites, and Magnetosphere (eds Bagenal, F., Dowling, T. & McKinnon, W. B.) 307–328 (Cambridge Univ. Press, 2004).

    Google Scholar 

  27. Geissler, P., McEwen, A. S., Philips, C., Keszthelyi, L. & Spencer, J. R. Surface changes on Io during the Galileo mission. Icarus 169, 29–64 (2004).

    Article  Google Scholar 

  28. Battaglia, S. M., Stewart, M. A. & Kieffer, S. W. Io’s theothermal (sulfur)—lithosphere cycle inferred from sulfur solubility modeling of Pele’s magma supply. Icarus 235, 123–129 (2014).

    Article  Google Scholar 

  29. Melosh, H. J. & Raefsky, A. The dynamical origin of subduction zone topography. Geophys. J. R. Astron. Soc. 60, 333–354 (1980).

    Article  Google Scholar 

  30. Mackwell, S. J., Zimmerman, M. E. & Kohlstedt, D. L. High-temperature deformation of dry diabase with application to tectonics of Venus. J. Geophys. Res. 103, 975–984 (1998).

    Article  Google Scholar 

  31. Bland, M. T. & McKinnon, W. B. Forming Ganymede’s grooves at smaller strain: toward a self-consistent local and global strain history for Ganymede. Icarus 245, 247–262 (2015).

    Article  Google Scholar 

  32. Colmenares, L. B. & Zoback, M. D. A statistical evolution of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int. J. Rock Mech. Min. 39, 695–729 (2002).

    Article  Google Scholar 

  33. Vermeer, P. A. & de Borst, R. Non-associated plasticity for soils, concrete, and rocks. Heron 29, 1–64 (1984).

    Google Scholar 

  34. Bland, M. T., McKinnon, W. B. & Showman, A. P. The effects of strain localization on the formation of Ganymede’s grooved terrain. Icarus 210, 396–410 (2010).

    Article  Google Scholar 

  35. O’Reilly, T. C. & Davies, G. F. Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8, 313–316 (1981).

    Article  Google Scholar 

  36. Khurana, K. K. et al. Evidence of a global magma ocean in Io’s interior. Science 332, 1186–1189 (2011).

    Article  Google Scholar 

  37. Pritchard, M. E. & Stevenson, D. J. in Origin of the Earth and Moon (eds Canup, R. M. & Righter, K.) 179–196 (Univ. Arizona Press, 2000).

    Google Scholar 

  38. Klimczak, C., Byrne, P. K. & Solomon, S. C. A rock-mechanical assessment of Mercury’s global tectonic fabric. Earth Planet. Sci. Lett. 416, 82–90 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NASA’s Planetary Geology and Geophysics Program (NNX11AP16G) and Solar System Workings Program (NNH15AZ80I). M.T.B. thanks T. Becker for technical guidance in the production of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

M.T.B. designed and performed the finite element model simulations, analysed simulation results and prepared the manuscript. W.B.M. contributed to the design and analysis of the finite element model simulations and manuscript preparation.

Corresponding author

Correspondence to Michael T. Bland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bland, M., McKinnon, W. Mountain building on Io driven by deep faulting. Nature Geosci 9, 429–432 (2016). https://doi.org/10.1038/ngeo2711

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2711

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing