Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The complex genetics of hypoplastic left heart syndrome

Abstract

Congenital heart disease (CHD) affects up to 1% of live births1. Although a genetic etiology is indicated by an increased recurrence risk2,3, sporadic occurrence suggests that CHD genetics is complex4. Here, we show that hypoplastic left heart syndrome (HLHS), a severe CHD, is multigenic and genetically heterogeneous. Using mouse forward genetics, we report what is, to our knowledge, the first isolation of HLHS mutant mice and identification of genes causing HLHS. Mutations from seven HLHS mouse lines showed multigenic enrichment in ten human chromosome regions linked to HLHS5,6,7. Mutations in Sap130 and Pcdha9, genes not previously associated with CHD, were validated by CRISPR–Cas9 genome editing in mice as being digenic causes of HLHS. We also identified one subject with HLHS with SAP130 and PCDHA13 mutations. Mouse and zebrafish modeling showed that Sap130 mediates left ventricular hypoplasia, whereas Pcdha9 increases penetrance of aortic valve abnormalities, both signature HLHS defects. These findings show that HLHS can arise genetically in a combinatorial fashion, thus providing a new paradigm for the complex genetics of CHD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ohia HLHS phenotype and mouse HLHS mutations in human HLHS linkage intervals.
Figure 2: Phenotypes of Pcdha9m/m mice and CRISPR–Cas9-generated Sap130; Pcdha9 mice and sap130a-mutant zebrafish.
Figure 3: Ohia HLHS mutants show defects in cardiomyocyte proliferation, differentiation, and mitochondria.
Figure 4: RNA-seq and Sap130 ChIP–seq analyses show similar pathway enrichment.
Figure 5: Mutant genes recovered from HLHS mice and subjects with HLHS.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Hoffman, J.I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    Article  PubMed  Google Scholar 

  2. Gill, H.K., Splitt, M., Sharland, G.K. & Simpson, J.M. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detailed fetal echocardiography. J. Am. Coll. Cardiol. 42, 923–929 (2003).

    Article  PubMed  Google Scholar 

  3. Øyen, N. et al. Recurrence of congenital heart defects in families. Circulation 120, 295–301 (2009).

    Article  PubMed  Google Scholar 

  4. Benson, D.W., Martin, L.J. & Lo, C.W. Genetics of hypoplastic left heart syndrome. J. Pediatr. 173, 25–31 (2016).

    Article  PubMed  Google Scholar 

  5. Hinton, R.B. et al. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J. Am. Coll. Cardiol. 53, 1065–1071 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McBride, K.L. et al. Linkage analysis of left ventricular outflow tract malformations (aortic valve stenosis, coarctation of the aorta, and hypoplastic left heart syndrome). Eur. J. Hum. Genet. 17, 811–819 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin, L.J. et al. Evidence in favor of linkage to human chromosomal regions 18q, 5q and 13q for bicuspid aortic valve and associated cardiovascular malformations. Hum. Genet. 121, 275–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 521, 520–524 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, X. et al. Interrogating congenital heart defects with noninvasive fetal echocardiography in a mouse forward genetic screen. Circ Cardiovasc Imaging 7, 31–42 (2014).

    Article  PubMed  Google Scholar 

  10. Iascone, M. et al. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin. Genet. 81, 542–554 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Theis, J.L. et al. Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome. Hum. Genet. 134, 1003–1011 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Cerami, E., Demir, E., Schultz, N., Taylor, B.S. & Sander, C. Automated network analysis identifies core pathways in glioblastoma. PLoS One 5, e8918 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fleischer, T.C., Yun, U.J. & Ayer, D.E. Identification and characterization of three new components of the mSin3A corepressor complex. Mol. Cell. Biol. 23, 3456–3467 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kadamb, R., Mittal, S., Bansal, N., Batra, H. & Saluja, D. Sin3: insight into its transcription regulatory functions. Eur. J. Cell Biol. 92, 237–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Taketazu, M., Barrea, C., Smallhorn, J.F., Wilson, G.J. & Hornberger, L.K. Intrauterine pulmonary venous flow and restrictive foramen ovale in fetal hypoplastic left heart syndrome. J. Am. Coll. Cardiol. 43, 1902–1907 (2004).

    Article  PubMed  Google Scholar 

  16. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yen, S.T. et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev. Biol. 393, 3–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oliver, D., Yuan, S., McSwiggin, H. & Yan, W. Pervasive genotypic mosaicism in founder mice derived from genome editing through pronuclear injection. PLoS One 10, e0129457 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gaber, N. et al. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation. Am. J. Pathol. 183, 720–734 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Tomoeda, M. et al. Role of Meis1 in mitochondrial gene transcription of pancreatic cancer cells. Biochem. Biophys. Res. Commun. 410, 798–802 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoud, A.I. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249–253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luxán, G. et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19, 193–201 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. MacGrogan, D., Luna-Zurita, L. & de la Pompa, J.L. Notch signaling in cardiac valve development and disease. Birth Defects Res. A Clin. Mol. Teratol. 91, 449–459 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaimal, V., Bardes, E.E., Tabar, S.C., Jegga, A.G. & Aronow, B.J. ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res. 38, W96–W102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, M.P. & Yutzey, K.E. Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves. PLoS One 6, e29758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rivera-Feliciano, J. et al. Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133, 3607–3618 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Nakano, H. et al. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4, 1564 (2013).

    Article  PubMed  CAS  Google Scholar 

  29. van Loo, P.F. et al. Transcription factor Sp3 knockout mice display serious cardiac malformations. Mol. Cell. Biol. 27, 8571–8582 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manuylov, N.L. & Tevosian, S.G. Cardiac expression of Tnnt1 requires the GATA4-FOG2 transcription complex. ScientificWorldJournal 9, 575–587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vijaya, M. et al. Differential gene expression profiles during embryonic heart development in diabetic mice pregnancy. Gene 516, 218–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Fernandez, A., Li, X., Hartjes, K.A., Terzic, A. & Nelson, T.J. Natural cardiogenesis-based template predicts cardiogenic potential of induced pluripotent stem cell lines. Circ Cardiovasc Genet 6, 462–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Magarin, M., Schulz, H., Thierfelder, L. & Drenckhahn, J.D. Transcriptional profiling of regenerating embryonic mouse hearts. Genom. Data 9, 145–147 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chakraborty, S., Cheek, J., Sakthivel, B., Aronow, B.J. & Yutzey, K.E. Shared gene expression profiles in developing heart valves and osteoblast progenitor cells. Physiol. Genomics 35, 75–85 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Lange, F.J. et al. Lineage and morphogenetic analysis of the cardiac valves. Circ. Res. 95, 645–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Nakamura, T., Colbert, M.C. & Robbins, J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ. Res. 98, 1547–1554 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Peinado, H., Portillo, F. & Cano, A. Transcriptional regulation of cadherins during development and carcinogenesis. Int. J. Dev. Biol. 48, 365–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell. Biol. 28, 4772–4781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, Y. et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 29, 1803–1816 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mardin, W.A., Haier, J. & Mees, S.T. Epigenetic regulation and role of metastasis suppressor genes in pancreatic ductal adenocarcinoma. BMC Cancer 13, 264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noonan, J.P. et al. Extensive linkage disequilibrium, a common 16.7-kilobase deletion, and evidence of balancing selection in the human protocadherin alpha cluster. Am. J. Hum. Genet. 72, 621–635 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chandra, S. et al. Bicuspid aortic valve: inter-racial difference in frequency and aortic dimensions. JACC Cardiovasc. Imaging 5, 981–989 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Noguchi, Y . et al. Total expression and dual gene-regulatory mechanisms maintained in deletions and duplications of the Pcdha cluster. J. Biol. Chem. 284, 32002–32014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 1000 Genomes Project Consortium. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  45. McBride, K.L. et al. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am. J. Med. Genet. A. 134A, 180–186 (2005).

    Article  PubMed  Google Scholar 

  46. Hinton, R.B. Jr. et al. Hypoplastic left heart syndrome is heritable. J. Am. Coll. Cardiol. 50, 1590–1595 (2007).

    Article  PubMed  Google Scholar 

  47. Freud, L.R. et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation 130, 638–645 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Christofori, G. Snail1 links transcriptional control with epigenetic regulation. EMBO J. 29, 1787–1789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, Y., Dong, C. & Zhou, B.P. Epigenetic regulation of EMT: the Snail story. Curr. Pharm. Des. 20, 1698–1705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, X., Tobita, K., Francis, R.J. & Lo, C.W. Imaging techniques for visualizing and phenotyping congenital heart defects in murine models. Birth Defects Res. C Embryo Today 99, 93–105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43, D470–D478 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Keshava Prasad, T.S. et al. Human Protein Reference Database: 2009 update. Nucleic Acids Res. 37, D767–D772 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ganapathiraju, M.K. et al. Schizophrenia interactome with 504 novel protein-protein interactions. NPJ Schizophr. 2, 16012 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, Z. & Zhang, J. In search of the biological significance of modular structures in protein networks. PLOS Comput. Biol. 3, e107 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mably, J.D., Mohideen, M.A., Burns, C.G., Chen, J.N. & Fishman, M.C. Heart of glass regulates the concentric growth of the heart in zebrafish. Curr. Biol. 13, 2138–2147 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Gagnon, J.A. et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Jao, L.E., Wente, S.R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA 110, 13904–13909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hom, J.R. et al. The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. Dev. Cell 21, 469–478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hom, J., Yu, T., Yoon, Y., Porter, G. & Sheu, S.S. Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochim. Biophys. Acta 1797, 913–921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Picard, M., White, K. & Turnbull, D.M. Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. J. Appl. Physiol (1985) 114, 161–171 (2013).

    Article  Google Scholar 

  61. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Anders, S., Pyl, P.T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Ricci, M. et al. Myocardial alternative RNA splicing and gene expression profiling in early stage hypoplastic left heart syndrome. PLoS One 7, e29784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  67. Zhu, C., Wu, C., Aronow, B.J. & Jegga, A.G. Computational approaches for human disease gene prediction and ranking. Adv. Exp. Med. Biol. 799, 69–84 (2014).

    Article  PubMed  Google Scholar 

  68. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Yagi (Osaka University) for providing plasmid for Pcdha9 in situ probes and A. Handen (University of Pittsburgh) for assisting with programming. We also thank C.G Burns (Harvard Medical School) for providing the transgene marker, Tg (5.7myl7: nDsRed2). This work was supported by funding from the NIH (U01-HL098180 (C.W.L.), R01-HL132024 (C.W.L.), R01-GM104412 (C.W.L.), S10-OD010340 (C.W.L.), R01-MH094564 (M.K.G.), and OD011185 (S.A.M.)), the Children's Heart Foundation (L.J.M. and D.W.B.), and the Junior Cooperative Society (D.W.B.).

Author information

Authors and Affiliations

Authors

Contributions

Study design, C.W.L.; fetal ultrasound imaging and mutant recovery, X.L.; mouse phenotype analysis, X.L., S.S., Z.C., W.D., L.L., G.C.G. Y.W., M.C.S., W.T.R., and B.G.; mouse breeding and genotyping, X.L., S.S., Z.C., H.Y., and B.C.; mouse exome sequencing analysis, Y.L. and N.T.K.; network analysis, B.J.A. and M.K.G.; cardiomyocyte proliferation and apoptosis, S.S., Z.C., and X.L.; in situ hybridization, Z.C., X.L., and H.Y.; mitochondria function analysis and electron microscopy, Z.C., X.L., G.A.P., and K.L.d.M.B.; Sap130 gene and protein expression analysis, H.Y. and S.S.; LV and RV cardiac-tissue harvesting, RNA extraction, and RNA-seq, X.L., B.G., C.W.L., Z.C., and H.Y.; RNA-seq bioinformatics and ToppGene analysis, A.S.B., D.K., and B.J.A.; Sap130 ChIP–seq, H.Y. and A.S.B.; zebrafish morpholino experiments, M.S., M.T., S.W., and B.G.; zebrafish CRISPR mutant generation and analysis, M.S. and M.T.; CRISPR Sap130 guide-RNA design, W.P.; CRISPR–Cas9 F0 mouse embryo production and analysis, K.A.P., S.A.M., Z.C., G.C.G., M.C.S., and X.L.; CRISPR–Cas9 F0 founder-mouse production and F1 offspring propagation, K.A.P., S.A.M., and X.L.; mouse microarray analysis, B.J.A., C.W.L., and H.Y.; recruitment of subjects with HLHS and sample collection, C.W.L., O.K., L.J.M., D.W.B., and P.G.; human exome sequencing analysis and multigene human and mouse comparisons, C.W.L., X.L., B.J.A., A.B., A.S.B., L.J.M., and P.D.; statistics, L.J.M., M.Z., and X.L.; manuscript preparation, C.W.L., X.L., L.J.M., D.W.B., G.A.P., K.A.P., M.T., B.J.A., D.K., A.S.B., P.D., and H.Y.

Corresponding author

Correspondence to Cecilia W Lo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22 and Supplementary Tables 1–7 (PDF 35589 kb)

Supplementary Data 1

Mutations recovered in HLHS Mutant Mouse Lines. (XLSX 105 kb)

Supplementary Data 2

Netbox analysis of mutations recovered from HLHS mutant lines (XLSX 41 kb)

Supplementary Data 3

RNAseq analysis of differentially expressed genes in Ohia HLHS mutant heart tissue (XLSX 317 kb)

Supplementary Data 4

Pathway enrichment analysis of Ohia HLHS RNAseq Data (XLSX 20 kb)

Supplementary Data 5

ChIPseq analysis of Sap130 targets (XLSX 85 kb)

Supplementary Data 6

ToppGene pathway enrichment analysis of HLHS RNAseq and Sap130 ChIPseq data (XLSX 620 kb)

Supplementary Data 7

Gene expression analysis of microarray data from different mouse embryonic cardiac tissues and cell lines for Sap130 and Pcdha9 (XLSX 492 kb)

Supplementary Data 8

Multihit genes in human HLHS patients and Ohia HLHS mice, and interactome analysis (XLSX 2000 kb)

Supplementary Data 9

Multihit genes in 1000 genomes CEU subjects (XLSX 1201 kb)

Fetal ultrasound color flow Doppler imaging of Ohia HLHS mutant.

Color flow Doppler imaging using the Vevo2100 ultrasound system showed much less blood flow into the left ventricle, suggesting mitral valve stenosis. A tiny blood flow (blue blood flow) was observed flowing into the aorta, indicating aortic stenosis. Also note small VSD and foramen ovale opening with left to right shunt. (MOV 1183 kb)

Fetal ultrasound 2D imaging of HLHS Ohia mutant.

2D imaging using the Vevo2100 ultrasound system showed an Ohia HLHS heart in four-chamber view. Note the muscle-bound hypolastic left ventricle with small lumen and poor contractility. (MOV 2272 kb)

Video microscopy of HLHS Ohia mutant heart.

Video microscopy of an E14.5 Ohia HLHS fetus showed most of the contractile motion of the heart was associated with the right ventricle, with the left ventricle showing only weak contraction and no visible blood flow. Also note the hypolastic and displaced thymus, severely hypoplastic ascending aorta and interrupted aortic arch and muscle-bound hypoplastic left ventricle. (MOV 1891 kb)

Serial histopathology image stack of HLHS Ohia mutant heart in coronal view.

A serial histopathology image stack obtained by episcopic confocal microscopy of an E14.5 HLHS heart showed muscle-band hypoplastic LV with almost no lumen, mitral valve stenosis, cushion-like aortic valve and hypoplastic ascending aorta and hypoplastic right aortic arch. (MOV 4279 kb)

Color flow Doppler imaging of homozygous Ohia Pcdha9 mutant.

Echocardiography of adult Pcdha9m/m mutant and Pcdha9+/+ wildtype mice revealed aortic stenosis with regurgitation in the mutant mouse. This is indicated by high velocity jet flowing across the aortic valve in systole, and regurgitant flow retrograde from the descending aorta to the LV through the aortic valve in diastole. (MOV 1283 kb)

Functional MRI imaging of Ohia Pcdha9m/m mutant in coronal view.

MRI in coronal view of the same Pcdha9m/m mutant and. Pcdha9+/+ wildtype adult mice examined by echocardiography in Video 5 confirmed aortic stenosis and regurgitation in the mutant mouse. This is indicated by the thickened aortic valve with domeshaped opening and high velocity jet flowing across the aortic valve in systole, and with retrograde regurgitant diastolic flow to the LV. (MOV 696 kb)

Functional MRI imaging of Ohia Pcdha9m/m mutant in transverse view.

MRI in short axis view of the same mice shown in Video 6 revealed abnormal bicuspid aortic valve (BAV) in the Pcdha9m/m mutant, while the normal three-leaflet aortic valve is seen in the Pcdha9+/+ wildtype mouse. (MOV 673 kb)

Color flow Doppler imaging show HLHS in mutant from CRISPR/Cas9 targeted Sap130/Pcdha9 transgenic mice.

Color flow Doppler imaging using the Vevo2100 ultrasound system revealed HLHS in an F2 embryo double homozygous for the CRISPR/Cas9 generated Sap130/Pcdha9 mutations. Note absence of blood flow into the very small LV with no lumen, suggesting mitral valve atresia with hypoplastic LV. A tiny blood flow (red blood flow) into the aorta originating from the RV was observed, indicating aortic stenosis and double outlet right ventricle (DORV). Also note a regurgitant flow associated with the pulmonary valve. (MOV 547 kb)

Serial histopathology image stack of CRISPR/CAS Sap130/Pcdha9 targeted HLHS mutant embryo shown in coronal view.

A serial histopathology image stack obtained by episcopic confocal microscopy of the CRISPR/Cas9 transgenic mutant embryo shown in Video 8 revealed muscle-bound hypoplastic LV with almost no lumen, mitral valve atresia, hyoplastic ascending aorta, and with both the aorta and the pulmonary artery arising from RV, indicating DORV subtype of HLHS. (MOV 4451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yagi, H., Saeed, S. et al. The complex genetics of hypoplastic left heart syndrome. Nat Genet 49, 1152–1159 (2017). https://doi.org/10.1038/ng.3870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing