Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation

Abstract

To shed light on the peopling of South Asia and the origins of the morphological adaptations found there, we analyzed whole-genome sequences from 10 Andamanese individuals and compared them with sequences for 60 individuals from mainland Indian populations with different ethnic histories and with publicly available data from other populations. We show that all Asian and Pacific populations share a single origin and expansion out of Africa, contradicting an earlier proposal of two independent waves of migration1,2,3,4. We also show that populations from South and Southeast Asia harbor a small proportion of ancestry from an unknown extinct hominin, and this ancestry is absent from Europeans and East Asians. The footprints of adaptive selection in the genomes of the Andamanese show that the characteristic distinctive phenotypes of this population (including very short stature) do not reflect an ancient African origin but instead result from strong natural selection on genes related to human body size.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ancestry of Indian populations.
Figure 2: Fewer African-derived alleles in Indians, Andamanese, Papuans and Aboriginal Australians than in Europeans and East Asians.
Figure 3: Model of gene flow in Asia.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Coon, C.S. & Hunt, E.E. The Living Races of Man (Knopf, 1966).

  2. Molnar, S. Human Variation: Races, Types and Ethnic Groups (Routledge, 2015).

  3. Cavalli-Sforza, L.L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton University Press, 1994).

  4. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huxley, T.H. On the geographical distribution of the chief modifications of mankind. J. Ethnol. Soc. London 2, 404–412 (1870).

    Google Scholar 

  6. Brown, A.R. The Andaman Islanders: A Study in Social Anthropology (Cambridge University Press, 1922).

  7. Abbi, A. Is Great Andamanese genealogically and typologically distinct from Onge and Jarawa? Lang. Sci. 31, 791–812 (2009).

    Article  Google Scholar 

  8. Reich, D., Thangaraj, K., Patterson, N., Price, A.L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montgomery, S.H. Primate brains, the 'island rule' and the evolution of Homo floresiensis. J. Hum. Evol. 65, 750–760 (2013).

    Article  PubMed  Google Scholar 

  10. Zoledziewska, M. et al. Height-reducing variants and selection for short stature in Sardinia. Nat. Genet. 47, 1352–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Basu, A., Sarkar-Roy, N. & Majumder, P.P. Genomic reconstruction of the history of extant populations of India reveals five distinct ancestral components and a complex structure. Proc. Natl. Acad. Sci. USA 113, 1594–1599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dass, F. The Andaman Islands (The Good Shepherd Convent Press, 1937).

  13. Green, R.E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pickrell, J.K. & Pritchard, J.K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).

    Article  PubMed  Google Scholar 

  17. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  PubMed  Google Scholar 

  21. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swisher, C.C. III et al. Latest Homo erectus of Java: potential contemporaneity with Homo sapiens in southeast Asia. Science 274, 1870–1874 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Hammer, M.F., Woerner, A.E., Mendez, F.L., Watkins, J.C. & Wall, J.D. Genetic evidence for archaic admixture in Africa. Proc. Natl. Acad. Sci. USA 108, 15123–15128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vernot, B. & Akey, J.M. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Juyal, G. et al. Population and genomic lessons from genetic analysis of two Indian populations. Hum. Genet. 133, 1273–1287 (2014).

    Article  PubMed  Google Scholar 

  26. Pybus, M. et al. Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations. Bioinformatics 31, 3946–3952 (2015).

    CAS  PubMed  Google Scholar 

  27. Becker, K.G., Barnes, K.C., Bright, T.J. & Wang, S.A. The genetic association database. Nat. Genet. 36, 431–432 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  29. Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471–475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sudmant, P.H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  33. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Alexander, D.H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Delaneau, O., Marchini, J. & 1000 Genomes Project Consortium Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat. Commun. 5, 3934 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hudson, R.R. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Gravel, S. et al. Demographic history and rare allele sharing among human populations. Proc. Natl. Acad. Sci. USA 108, 11983–11988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gutenkunst, R.N., Hernandez, R.D., Williamson, S.H. & Bustamante, C.D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Delaneau, O., Marchini, J. & Zagury, J.-F. Alinear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).

    Article  CAS  Google Scholar 

  46. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nielsen, R. et al. Genomic scans for selective sweeps using SNP data. Genome Res. 15, 1566–1575 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fay, J.C. & Wu, C.I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fu, Y.X. & Li, W.H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sabeti, P.C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Voight, B.F., Kudaravalli, S., Wen, X. & Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sabeti, P.C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Schaffner, S.F. et al. Calibrating a coalescent simulation of human genome sequence variation. Genome Res. 15, 1576–1583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J. Nye and C. Tyler-Smith kindly corrected the manuscript in depth. Thanks are given to R.A. Foley for discussion and inspiring input for Figure 3. Our main funding was provided by the joint Spain–India bilateral grant PRI-PIBIN-2011-0942 from the Ministerio de Economía y Competitividad (Spain). Complementary funding was provided by grant BFU2013-43726-P from the Ministerio de Economía y Competitividad (Spain), with the support of Secretaria d'Universitats i Recerca, Departament d'Economia i Coneixement de la Generalitat de Catalunya (GRC 2014 SGR866).

Author information

Authors and Affiliations

Authors

Contributions

M.M., F.C., P.P.M. and J.B. conceived and designed the project. P.P.M. provided the samples. P.P.M., T.X. and Q.L. sequenced samples and carried out initial analyses. M.M. performed the remaining genetic data analyses. F.C., G.M.D., M.P., M.G.N., D.C., H.L., P.P.M. and J.B. participated in and discussed analyses. M.M., F.C., P.P.M. and J.B. wrote the manuscript.

Corresponding authors

Correspondence to Partha P Majumder or Jaume Bertranpetit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–38, Supplementary Tables 1–17 and Supplementary Note. (PDF 6962 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, M., Casals, F., Xu, T. et al. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nat Genet 48, 1066–1070 (2016). https://doi.org/10.1038/ng.3621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3621

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research