Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Weighting sequence variants based on their annotation increases power of whole-genome association studies

Abstract

The consensus approach to genome-wide association studies (GWAS) has been to assign equal prior probability of association to all sequence variants tested. However, some sequence variants, such as loss-of-function and missense variants, are more likely than others to affect protein function and are therefore more likely to be causative. Using data from whole-genome sequencing of 2,636 Icelanders and the association results for 96 quantitative and 123 binary phenotypes, we estimated the enrichment of association signals by sequence annotation. We propose a weighted Bonferroni adjustment that controls for the family-wise error rate (FWER), using as weights the enrichment of sequence annotations among association signals. We show that this weighted adjustment increases the power to detect association over the standard Bonferroni correction. We use the enrichment of associations by sequence annotation we have estimated in Iceland to derive significance thresholds for other populations with different numbers and combinations of sequence variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enrichments of VEP annotations for all quantitative and binary phenotypes.
Figure 2: Enrichments for all quantitative and binary phenotypes.

Similar content being viewed by others

References

  1. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42, D1001–D1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Gudbjartsson, D.F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

  5. Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

    Article  PubMed  Google Scholar 

  6. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  7. Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 46, 818–825 (2014).

  8. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

  9. Sham, P.C. & Purcell, S.M. Statistical power and significance testing in large-scale genetic studies. Nat. Rev. Genet. 15, 335–346 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Thomas, P.D. & Kejariwal, A. Coding single-nucleotide polymorphisms associated with complex vs. Mendelian disease: evolutionary evidence for differences in molecular effects. Proc. Natl. Acad. Sci. USA 101, 15398–15403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schork, A.J. et al. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS Genet. 9, e1003449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Minelli, C. et al. Importance of different types of prior knowledge in selecting genome-wide findings for follow-up. Genet. Epidemiol. 37, 205–213 (2013).

    Article  PubMed  Google Scholar 

  14. Sveinbjornsson, G. et al. Rare mutations associating with serum creatinine and chronic kidney disease. Hum. Mol. Genet. 23, 6935–6943 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eilbeck, K. et al. The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol. 6, R44 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  17. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  18. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  20. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooper, G.M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goode, D.L. et al. Evolutionary constraint facilitates interpretation of genetic variation in resequenced human genomes. Genome Res. 20, 301–310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pickrell, J.K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iversen, E.S., Lipton, G., Clyde, M.A. & Monteiro, A.N. Functional annotation signatures of disease susceptibility loci improve SNP association analysis. BMC Genomics 15, 398 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roeder, K. & Wasserman, L. Genome-wide significance levels and weighted hypothesis testing. Stat. Sci. 24, 398–413 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roeder, K., Bacanu, S.A., Wasserman, L. & Devlin, B. Using linkage genome scans to improve power of association in genome scans. Am. J. Hum. Genet. 78, 243–252 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Genovese, C.R., Roeder, K. & Wasserman, L. False discovery control with p-value weighting. Biometrika 93, 509–524 (2006).

    Article  Google Scholar 

  31. Köhler, S. et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014).

    Article  PubMed  Google Scholar 

  32. Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hazra, A. et al. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nat. Genet. 40, 1160–1162 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nelder, J.A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965).

    Article  Google Scholar 

  35. Efron, B. & Tibshirani, R.J. An Introduction to the Bootstrap (Chapman & Hall/CRC, 1993).

Download references

Acknowledgements

The authors thank all the participants in the study. We also thank the staff at the Patient Recruitment Center and the deCODE Genetics core facilities.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed and results were interpreted by G.S., A.A., G.M., H.H., A.K., U.T., P.S., D.F.G. and K.S. G.S., A.A., F.Z., S.A.G., A.O., G.M., A.K., P.S. and D.F.G. performed the statistical and bioinformatics analyses. The manuscript was drafted by G.S., A.A., P.S., D.F.G. and K.S. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Daniel F Gudbjartsson or Kari Stefansson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–10 and Supplementary Note. (PDF 889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sveinbjornsson, G., Albrechtsen, A., Zink, F. et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat Genet 48, 314–317 (2016). https://doi.org/10.1038/ng.3507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing