Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coral bleaching pathways under the control of regional temperature variability

Abstract

Increasing sea surface temperatures (SSTs) are predicted to adversely impact coral populations worldwide through increasing thermal bleaching events. Future bleaching is unlikely to be spatially uniform. Therefore, understanding what determines regional differences will be critical for adaptation management. Here, using a cumulative heat stress metric, we show that characteristics of regional SST determine the future bleaching risk patterns. Incorporating observed information on SST variability, in assessing future bleaching risk, provides novel options for management strategies. As a consequence, the known biases in climate model variability and the uncertainties in regional warming rate across climate models are less detrimental than previously thought. We also show that the thresholds used to indicate reef viability can strongly influence a decision on what constitutes a potential refugia. Observing and understanding the drivers of regional variability, and the viability limits of coral reefs, is therefore critical for making meaningful projections of coral bleaching risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sea surface temperature (SST) characteristics and bleaching frequency in the tropical Pacific under a multi-model-mean basin-averaged 1.5 °C warming.
Figure 2: Regional behaviour of degree heating week (DHW) under warming.
Figure 3: Regional pathways towards irreversible bleaching.

Similar content being viewed by others

References

  1. Hoegh-Guldberg, O. et al. in Vulnerability of Tropical Fisheries and Aquaculture to Climate Change (eds Bell, J. D., Johnson, J. E. & Hobday, A. J.) 251–296 (Secretariat of the Pacific Community, 2011).

    Google Scholar 

  2. Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591–599 (2013).

    Article  Google Scholar 

  3. Anthony, K. R. N. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Change Biol. 21, 48–61 (2015).

    Article  Google Scholar 

  4. Marshall, A. T. & Code, P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23, 218–224 (2004).

    Google Scholar 

  5. Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509 (1996).

    Article  Google Scholar 

  6. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).

    Article  Google Scholar 

  7. Cooper, T. F., De’ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Change Biol. 14, 529–538 (2008).

    Article  Google Scholar 

  8. Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010).

    Article  CAS  Google Scholar 

  9. Glynn, P. W. Coral reef bleaching: ecological perspectives. Coral Reefs 12, 1–17 (1993).

    Article  Google Scholar 

  10. Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).

    Article  CAS  Google Scholar 

  11. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  CAS  Google Scholar 

  12. Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Center, 2008).

    Google Scholar 

  13. Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, 6243 (2015).

    Article  Google Scholar 

  14. Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M. & Hoegh-Gulberg, O. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Change Biol. 11, 2251–2265 (2005).

    Article  Google Scholar 

  15. Meissner, K. J., Lippmann, T. & Gupta, a. S. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs 31, 309–319 (2012).

    Article  Google Scholar 

  16. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 2, 1–6 (2012).

    Article  Google Scholar 

  17. van Hooidonk, R., Maynard, J. a. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Change 3, 508–511 (2013).

    Article  CAS  Google Scholar 

  18. Sutherland, W. J. et al. One hundred questions of importance to the conservation of global biological diversity. Conserv. Biol. 23, 557–567 (2009).

    Article  CAS  Google Scholar 

  19. Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall*. J. Clim. 23, 966–986 (2010).

    Article  Google Scholar 

  20. Donner, S. D. An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events. Ecol. Appl. 21, 1718–1730 (2011).

    Article  Google Scholar 

  21. Eakin, C. M., Lough, J. M. & Heron, S. F. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 41–67 (Springer, 2009).

    Book  Google Scholar 

  22. Liu, G. et al. NOAA Coral Reef Watch’s next-generation 5 km satellite coral bleaching thermal stress monitoring. 29, 27–29 (2014).

  23. Heron, S. et al. Validation of reef-scale thermal stress satellite products for coral bleaching monitoring. Remote Sens. 8, 59 (2016).

    Article  Google Scholar 

  24. Eakin, C. M., Liu, G., Chen, M. & K, A. Ghost of bleaching future: seasonal outlooks from NOAA’s operational climate forecast system. Proc. 12th Int. Coral Reef Symp. (2012)http://www.icrs2012.com/proceedings/manuscripts/ICRS2012_10A_1.pdf

    Google Scholar 

  25. Logan, C. a., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Change Biol. 20, 125–139 (2014).

    Article  Google Scholar 

  26. Brown, J. N., Langlais, C. & Maes, C. Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5. Clim. Dynam. 42, 3061–3076 (2014).

    Article  Google Scholar 

  27. Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: from CMIP3 to CMIP5. Clim. Dynam. 42, 1999–2018 (2014).

    Article  Google Scholar 

  28. Wigley, T. M. L. The effect of changing climate on the frequency of absolute extreme events. Climatic Change 97, 67–76 (2009).

    Article  Google Scholar 

  29. van Hooidonk, R. & Huber, M. Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions. Coral Reefs 31, 121–131 (2012).

    Article  Google Scholar 

  30. Kleypas, J. a., Danabasoglu, G. & Lough, J. M. Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events. Geophys. Res. Lett. 35, L03613 (2008).

    Article  Google Scholar 

  31. Freeman, L. a., Miller, A. J., Norris, R. D. & Smith, J. E. Classification of remote Pacific coral reefs by physical oceanographic environment. J. Geophys. Res. 117, C02007 (2012).

    Article  Google Scholar 

  32. Eakin, C. M. et al. Global coral bleaching 2014–2017: status and an appeal for observations. Reef Encount. 31, 20–26 (2016).

    Google Scholar 

  33. DiNezio, P. N. et al. Climate response of the equatorial Pacific to global warming. J. Clim. 22, 4873–4892 (2009).

    Article  Google Scholar 

  34. Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).

    Article  Google Scholar 

  35. Selig, E. R., Casey, K. S. & Bruno, J. F. Temperature-driven coral decline: the role of marine protected areas. Glob. Change Biol. 18, 1561–1570 (2012).

    Article  Google Scholar 

  36. Carilli, J., Donner, S. D. & Hartmann, A. C. Historical temperature variability affects coral response to heat stress. PLoS ONE 7, e34418 (2012).

    Article  CAS  Google Scholar 

  37. Oliver, T. a. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).

    Article  Google Scholar 

  38. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    Article  CAS  Google Scholar 

  39. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  CAS  Google Scholar 

  40. Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Article  Google Scholar 

  41. Guilyardi, E. et al. Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull. Am. Meteorol. Soc. 90, 325–340 (2009).

    Article  Google Scholar 

  42. Lima, F. P. & Wethey, D. S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nat. Commun. 3, 704 (2012).

    Article  Google Scholar 

  43. Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).

    Article  Google Scholar 

  44. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    Article  CAS  Google Scholar 

  45. Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).

    Article  CAS  Google Scholar 

  46. Wooldridge, S., Heron, S., Brodie, J., Done, T. & Masiri, I. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 2. A regional-scale predictive model for the Great Barrier Reef, Australia. Mar. Pollut. Bull. 114, 343–354 (2016).

    Article  Google Scholar 

  47. Van Woesik, R., Sakai, K., Ganase, a. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).

    Article  Google Scholar 

  48. Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    Article  CAS  Google Scholar 

  49. Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).

    Article  Google Scholar 

  50. Evenhuis, C., Lenton, A., Cantin, N. E. & Lough, J. M. Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification. Biogeosciences 12, 2607–2630 (2015).

    Article  CAS  Google Scholar 

  51. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article  Google Scholar 

  52. Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191 (1990).

    Article  Google Scholar 

  53. Berkelmans, R. & Willis, B. L. Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. Coral Reefs 18, 219–228 (1999).

    Article  Google Scholar 

  54. Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos 84, 137–144 (2003).

    Article  Google Scholar 

  55. Heron, S. F. et al. Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals. PLoS ONE 5, e12210 (2010).

    Article  Google Scholar 

  56. Heron, S. et al. Identifying oceanic thermal anomalies in the coral triangle region. Proc. 12th Int. Coral Reef Symp. (2012); http://www.icrs2012.com/proceedings/manuscripts/ICRS2012_17D_1.pdf

    Google Scholar 

  57. Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Change 5, 688–694 (2015).

    Article  Google Scholar 

  58. Donner, S. D. Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS ONE 4, e5712 (2009).

    Article  Google Scholar 

  59. Eakin, C. M. et al. Caribbean Corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).

    Article  Google Scholar 

  60. Sheppard, C. R. C. Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425, 294–297 (2003).

    Article  CAS  Google Scholar 

  61. Teneva, L. et al. Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates. Coral Reefs 31, 1–12 (2012).

    Article  Google Scholar 

  62. Halford, A., Cheal, A. J., Ryan, D. & Williams, D. M. Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 85, 1892–1905 (2004).

    Article  Google Scholar 

  63. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  64. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  65. Commonwealth Scientific and Industrial Research Organization (CSIRO) Bureau of Meteorology (BoM) Climate Change in the Pacific: Scientific Assessment and New Research Vol. 2, Country Reports 13–23 (CSIRO and BOM, 2011).

  66. Smith, I. N., Moise, A. F. & Colman, R. a. Large-scale circulation features in the tropical western Pacific and their representation in climate models. J. Geophys. Res. 117, 1–15 (2012).

    Google Scholar 

  67. Brown, J. N. et al. Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Climatic Change 119, 147–161 (2013).

    Article  Google Scholar 

  68. Brown, J. R., Moise, A. F. & Colman, R. A. The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate. Clim. Dynam. 41, 2179–2197 (2013).

    Article  Google Scholar 

  69. Grose, M. R. et al. Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol. 34, 3382–3399 (2014).

    Article  Google Scholar 

  70. Jourdain, N. C. et al. The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim. Dynam. 41, 3073–3102 (2013).

    Article  Google Scholar 

  71. Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the World Climate Research Programs Working Group on Coupled Modelling for their roles in making available the CMIP5 multi-model data sets. This work was supported by the NCI National Facility. This research was conducted with the support of the Pacific-Australia Climate Change Science and Adaptation Planning Program funded by AusAID in collaboration with the Department of Climate Change and Energy Efficiency, and delivered by the Bureau of Meteorology and the Commonwealth Scientific and Industrial Research Organisation (CSIRO). The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the US government.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and writing of the paper. C.E.L. performed the research. C.E.L. and A.L. analysed the data.

Corresponding author

Correspondence to C. E. Langlais.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langlais, C., Lenton, A., Heron, S. et al. Coral bleaching pathways under the control of regional temperature variability. Nature Clim Change 7, 839–844 (2017). https://doi.org/10.1038/nclimate3399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3399

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene