Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Climatic vulnerability of the world’s freshwater and marine fishes

Abstract

Climate change is a mounting threat to biological diversity1, compromising ecosystem structure and function, and undermining the delivery of essential services worldwide2. As the magnitude and speed of climate change accelerates3, greater understanding of the taxonomy and geography of climatic vulnerability is critical to guide effective conservation action. However, many uncertainties remain regarding the degree and variability of climatic risk within entire clades and across vast ecosystem boundaries4. Here we integrate physiological estimates of thermal sensitivity for 2,960 ray-finned fishes with future climatic exposure, and demonstrate that global patterns of vulnerability differ substantially between freshwater and marine realms. Our results suggest that climatic vulnerability for freshwater faunas will be predominantly determined by elevated levels of climatic exposure predicted for the Northern Hemisphere, whereas marine faunas in the tropics will be the most at risk, reflecting their higher intrinsic sensitivity. Spatial overlap between areas of high physiological risk and high human impacts, together with evidence of low past rates of evolution in upper thermal tolerance, highlights the urgency of global conservation actions and policy initiatives if harmful climate effects on the world’s fishes are to be mitigated in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Species-level patterns in physiological sensitivity for modern-day and projected climate.
Figure 2: Faunal-level patterns in physiological sensitivity for modern-day and projected climate.
Figure 3: Comparison between faunal-level evolutionary rates and future climatic exposure.
Figure 4: Spatial overlap between projected physiological sensitivity, evolutionary rates and human impacts.

Similar content being viewed by others

References

  1. Urban, M. Accelerated extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  Google Scholar 

  2. Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    Article  CAS  Google Scholar 

  3. Mahlstein, I., Daniel, J. & Solomon, S. Pace of shifts in climate regions increases with global temperature. Nat. Clim. Change 3, 739–743 (2013).

    Article  Google Scholar 

  4. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Article  Google Scholar 

  5. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  Google Scholar 

  6. Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    Article  CAS  Google Scholar 

  7. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  8. Comte, L. & Olden, J. D. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Glob. Change Biol. 23, 728–736 (2017).

    Article  Google Scholar 

  9. Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  Google Scholar 

  10. Frederico, R. G., Olden, J. D. & Zuanon, J. Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 91–102 (2016).

    Article  Google Scholar 

  11. Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).

    Article  CAS  Google Scholar 

  12. Rohde, K., Heap, M. & Heapt, D. Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. Am. Nat. 142, 1–16 (1993).

    Article  Google Scholar 

  13. Bennett, S., Wernberg, T., Arackal Joy, B., de Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun. 6, 10280 (2015).

    Article  CAS  Google Scholar 

  14. Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nat. Clim. Change 5, 695–701 (2015).

    Article  Google Scholar 

  15. Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).

    Article  CAS  Google Scholar 

  16. Lancaster, L. T. Widespread range expansions shape latitudinal variation in insect thermal limits. Nat. Clim. Change 6, 618–621 (2016).

    Article  Google Scholar 

  17. Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).

    Article  Google Scholar 

  18. Cang, F. A., Wilson, A. A. & Wiens, J. J. Climate change is projected to outpace rates of niche change in grasses. Biol. Lett. 12, 20160368 (2016).

    Article  Google Scholar 

  19. Messer, P. W., Ellner, S. P. & Hairston, N. G. Can population genetics adapt to rapid evolution? Trends Genet. 32, 408–418 (2016).

    Article  CAS  Google Scholar 

  20. Lavergne, S., Evans, M. E. K., Burfield, I. J., Jiguet, F. & Thuiller, W. Are species’ responses to global change predicted by past niche evolution? Phil. Trans. R. Soc. B 368, 20120091 (2013).

    Article  Google Scholar 

  21. Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).

    Article  Google Scholar 

  22. Berry, P., Ogawa-Onishi, Y. & McVey, A. The vulnerability of threatened species: adaptive capability and adaptation opportunity. Biology 2, 872–893 (2013).

    Article  Google Scholar 

  23. Mace, G. M. & Purvis, A. Evolutionary biology and practical conservation: bridging a widening gap. Mol. Ecol. 17, 9–19 (2008).

    Article  Google Scholar 

  24. Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).

    Article  Google Scholar 

  25. Lawler, J. J., Ruesch, A. S., Olden, J. D. & McRae, B. H. Projected climate-driven faunal movement routes. Ecol. Lett. 16, 1014–1022 (2013).

    Article  CAS  Google Scholar 

  26. Lawler, J. J. & Olden, J. D. Reframing the debate over assisted colonization. Front. Ecol. Environ. 9, 569–574 (2011).

    Article  Google Scholar 

  27. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article  CAS  Google Scholar 

  28. Palmer, M. A. et al. Climate change and the world’s river basins: anticipating management options. Front. Ecol. Environ. 6, 81–89 (2008).

    Article  Google Scholar 

  29. Deutsch, C., Ferrel, A., Seibel, B., Portner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).

    Article  CAS  Google Scholar 

  30. García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2015).

    Article  Google Scholar 

  31. McSweeney, C. F., Jones, R. G., Lee, R. W. & Rowell, D. P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dynam. 44, 3237–3260 (2015).

    Article  Google Scholar 

  32. Punzet, M., Voß, F., Voß, A., Kynast, E. & Bärlund, I. A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates. J. Hydrometeorol. 13, 1052–1065 (2012).

    Article  Google Scholar 

  33. Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574 (1997).

    Article  Google Scholar 

  34. Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    Article  CAS  Google Scholar 

  35. Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013).

    Article  Google Scholar 

  36. IUCN Red List of Threatened SpeciesTM (IUCN, accessed 27 January 2016); http://www.iucnredlist.org

  37. Bruggeman, J., Heringa, J. & Brandt, B. W. PhyloPars: estimation of missing parameter values using phylogeny. Nucleic Acids Res. 37, 179–184 (2009).

    Article  Google Scholar 

  38. Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  Google Scholar 

  39. Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    Article  CAS  Google Scholar 

  40. Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Article  Google Scholar 

  41. Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).

    Article  Google Scholar 

  42. Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58, 403–414 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, and the climate modelling groups (listed in Supplementary Table 3) for producing and making available their model output. Comments by L. Kuehne improved the manuscript. Financial support was provided by a H. Mason Keeler Endowed Professorship (School of Aquatic and Fishery Sciences, University of Washington) to J.D.O. (also supporting L.C.).

Author information

Authors and Affiliations

Authors

Contributions

L.C. and J.D.O. designed the general study, L.C. collected the data and implemented the analyses, and L.C. and J.D.O. wrote the paper.

Corresponding author

Correspondence to Lise Comte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1955 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comte, L., Olden, J. Climatic vulnerability of the world’s freshwater and marine fishes. Nature Clim Change 7, 718–722 (2017). https://doi.org/10.1038/nclimate3382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing